IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2019i1p38-48.html
   My bibliography  Save this article

Могут ли фондовые аналитики предсказать рыночный риск? Новые сведения из теории копулы // Can Stock Analysts Predict Market Risk? New Evidence from Copula Theory

Author

Listed:
  • I. Medovikov S.

    (Brock university)

  • И. Медовиков С.

    (Университет Брок)

Abstract

We assess investment value of stock recommendations from the standpoint of market risk. We match I/B/E/S (Institutional Brokers’ Estimates System) consensus recommendations issued in January 2015 for a cross-section of u.S. public equities with realized volatility of these papers, showing that these recommendations signifcantly correlate with subsequent changes in market risk. Thus, the results indicate that to some extent the analysts can predict an increase or decrease in risk, which can beneft asset management. However, the relationship between the recommendations and the risk is not linear and depends on the specifc recommendation. using a semi-parametric copula model, we fnd recommendation levels to be associated with future changes in volatility. We further fnd this relationship to be asymmetric and most pronounced among the best-rated stocks which experience largest volatility declines. We conduct a trading simulation showing how stock selection based on such ratings can lead to a reduction in portfolio-level value-at-risk. Статья оценивает способность финансовых аналитиков прогнозировать рыночный риск. Сопоставляя консенсус-рекомендации, выпущенные аналитиками для акций публичных компаний США, содержащихся в системе I/B/E/S (Institutional Brokers’ Estimates System) на январь 2015 г., с фактической волатильностью этих бумаг, мы показываем, что эти рекомендации значимо коррелируют с последующими изменениями в уровне рыночного риска. Таким образом, наши результаты указывают на то, что аналитики хотя бы в какой-то степени способны предсказать нарастание или убывание риска, что может принести пользу в управлении активами. Однако взаимоотношение между рекомендациями и риском не является линейным и зависит от конкретной рекомендации. Используя семи-параметрическую статистическую модель на основе теории копул, автор показывает, что «экстремальные» рекомендации (т.е. самые положительные или самые отрицательные) несут гораздо большую информационную нагрузку, чем остальные. В контексте научной литературы на данную тему результаты исследования, по-видимому, представляют собой одну из первых попыток установить эмпирическую зависимость между рекомендациями аналитиков и рыночным риском.

Suggested Citation

  • I. Medovikov S. & И. Медовиков С., 2019. "Могут ли фондовые аналитики предсказать рыночный риск? Новые сведения из теории копулы // Can Stock Analysts Predict Market Risk? New Evidence from Copula Theory," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 23(1), pages 38-48.
  • Handle: RePEc:scn:financ:y:2019:i:1:p:38-48
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/817/541.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Knight & Colin Lizieri & Stephen Satchell, 2005. "Diversification When It Hurts? The Joint Distributions of Real Estate and Equity Markets," Real Estate & Planning Working Papers rep-wp2005-16, Henley Business School, University of Reading.
    2. Roger K. Loh & René M. Stulz, 2011. "When Are Analyst Recommendation Changes Influential?," The Review of Financial Studies, Society for Financial Studies, vol. 24(2), pages 593-627.
    3. Ning, Cathy, 2010. "Dependence structure between the equity market and the foreign exchange market-A copula approach," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 743-759, September.
    4. Medovikov, Ivan, 2014. "Can analysts predict rallies better than crashes?," Finance Research Letters, Elsevier, vol. 11(4), pages 319-325.
    5. Devos, Erik & Hao, Wei & Prevost, Andrew K. & Wongchoti, Udomsak, 2015. "Stock return synchronicity and the market response to analyst recommendation revisions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 376-389.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Medovikov, Ivan, 2016. "When does the stock market listen to economic news? New evidence from copulas and news wires," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 27-40.
    2. Rakesh K. Bissoondeeal & Leonidas Tsiaras, 2023. "Investigating the Links between UK House Prices and Share Prices with Copulas," The Journal of Real Estate Finance and Economics, Springer, vol. 67(3), pages 423-452, October.
    3. Syed Abul, Basher & Salem, Nechi & Hui, Zhu, 2014. "Dependence patterns across Gulf Arab stock markets: a copula approach," MPRA Paper 56566, University Library of Munich, Germany.
    4. Jiang, Shuai & Guo, Yanhong & Zhou, Wenjun & Li, Xianneng, 2023. "Identifying predictors of analyst rating quality: An ensemble feature selection approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1853-1873.
    5. Kim, Karam & Ryu, Doojin & Yang, Heejin, 2021. "Information uncertainty, investor sentiment, and analyst reports," International Review of Financial Analysis, Elsevier, vol. 77(C).
    6. Wang, Yi-Chiuan & Wu, Jyh-Lin & Lai, Yi-Hao, 2013. "A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1706-1719.
    7. Ponrajah, Jeremey & Ning, Cathy, 2023. "Stock–bond dependence and flight to/from quality," International Review of Financial Analysis, Elsevier, vol. 86(C).
    8. Tian, Maoxi & El Khoury, Rim & Alshater, Muneer M., 2023. "The nonlinear and negative tail dependence and risk spillovers between foreign exchange and stock markets in emerging economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    9. Sun, Xiaolei & Liu, Chang & Wang, Jun & Li, Jianping, 2020. "Assessing the extreme risk spillovers of international commodities on maritime markets: A GARCH-Copula-CoVaR approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    10. Alan Crane & Kevin Crotty, 2020. "How Skilled Are Security Analysts?," Journal of Finance, American Finance Association, vol. 75(3), pages 1629-1675, June.
    11. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    12. Kal, Süleyman Hilmi & Arslaner, Ferhat & Arslaner, Nuran, 2015. "The dynamic relationship between stock, bond and foreign exchange markets," Economic Systems, Elsevier, vol. 39(4), pages 592-607.
    13. Michalis Makrominas, 2015. "The impact of analyst-investor disagreement on the cross-section of implied cost of capital," Australian Journal of Management, Australian School of Business, vol. 40(2), pages 224-244, May.
    14. Colin Lizieri & Stephen Satchell & Qi Zhang, 2007. "The Underlying Return‐Generating Factors for REIT Returns: An Application of Independent Component Analysis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 35(4), pages 569-598, December.
    15. Chen, Yong & Kelly, Bryan & Wu, Wei, 2020. "Sophisticated investors and market efficiency: Evidence from a natural experiment," Journal of Financial Economics, Elsevier, vol. 138(2), pages 316-341.
    16. Vesa Pursiainen, 2022. "Cultural Biases in Equity Analysis," Journal of Finance, American Finance Association, vol. 77(1), pages 163-211, February.
    17. Cumperayot, Phornchanok & Kouwenberg, Roy, 2013. "Early warning systems for currency crises: A multivariate extreme value approach," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 151-171.
    18. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    19. Francis, Bill & Hasan, Iftekhar & Mani, Sureshbabu & Ye, Pengfei, 2016. "Relative peer quality and firm performance," Journal of Financial Economics, Elsevier, vol. 122(1), pages 196-219.
    20. Andrey Pavlov & Eva Steiner & Susan Wachter, 2018. "The Consequences of REIT Index Membership for Return Patterns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 46(1), pages 210-250, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2019:i:1:p:38-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.