IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2018i4p38-51.html
   My bibliography  Save this article

Методические Подходы К Прогнозированию Динамики Курса Криптовалют С Применением Инструментов Стохастического Анализа (На Примере Биткоина) // Methodological Approaches To Forecasting Dynamics Of Cryptocurrencies Exchange Rate Using Stochastic Analysis Tools (On The Example Of Bitcoin)

Author

Listed:
  • M. Safiullin R.

    (Kazan (Privolzhsky) Federal university)

  • A. Abdukaeva A.

    (Center for advanced economic research of Academy of Sciences of the Republic of Tatarstan)

  • L. El’shin A.

    (Center for advanced economic research of Academy of Sciences of the Republic of Tatarstan)

  • М. Сафиуллин Р.

    (Казанский (Приволжский) федеральный университет)

  • А. Абдукаева А.

    (Центр перспективных экономических исследований Академии наук Республики Татарстан)

  • Л. Ельшин А.

    (Центр перспективных экономических исследований Академии наук Республики Татарстан)

Abstract

The accelerated pace of development of the cryptocurrency market and its integration into the system of economic, operational, financial and other processes determines the need for a comprehensive study of this phenomenon. This is particularly relevant because in recent months, at the state level have intensified discussions on the prospects of the legalization of the cryptocurrency market and the possibility of using its tools in the economic activities of economic agents. Despite the sometimes polar views and approaches at the moment among Russian experts regarding the solution to this issue, the development of the crypto-currencies market is extremely high, regardless of its regulation. This determines and actualizes the scientific research in the field of evaluation of the prospects of development of this market, forming the subject of this study in order to predict the possible effects and risks for the national economic system. The purpose of the article is the development of tools of modelling and forecasting the volatility of the cryptocurrency market on the basis of “foreseeing” fluctuations in the value of “digital money” using special models of autoregression (ARMA, ARIMA). The study was based on the application of a class of parametric models. It allowed describing both stationary and non-stationary time series and on this basis to develop a system of prognostic estimates for the prospects of further development of the series under study. With the help of our ARIMA model, which evaluates the parameters of the analyzed time series of the cryptocurrency exchange rate, we developed a system of prognostic assessments for the short term. The authors proved that the application of such models with a high level of reliability predicts future adjustments in the market under study. It leads to a high level of prospects for their use in modelling future parameters of the cryptocurrency market development. This creates a basis for a business to develop adaptive mechanisms for to emerging price index adjustments of “digital money”. Ускоренные темпы развития рынка криптовалюты и его интеграция в систему хозяйственных, операционных, финансовых и других процессов определяют необходимость комплексного изучения данного явления. Особую актуальность этому придает то, что на государственном уровне в последние месяцы активизировались обсуждения относительно перспектив легализации рынка криптовалюты и возможностей использования его инструментов в хозяйственной деятельности экономических агентов. Несмотря на порой полярные взгляды и подходы, сформировавшиеся на текущий момент среди российских экспертов относительно решения данного вопроса, развитие крипторынка происходит крайне высокими темпами вне зависимости от его регулирования. Это обусловливает и актуализирует проведение научных изысканий в области оценки перспектив развития данного рынка, формирующих предмет настоящего исследования с целью предсказания возможных эффектов и рисков для национальной экономической системы. Цель статьи — разработка инструментария, направленного на решение вопросов в части моделирования и прогнозирования волатильности рынка криптовалюты на основе «предвидения» перспективных колебаний стоимости «цифровых денег» с использованием специальных моделей авторегрессии (ARMA, ARIMA). Исследование базируется на использовании класса параметрических моделей, позволяющих описывать как стационарные, так и нестационарные временные ряды и на этой основе разрабатывать систему прогностических оценок относительно перспектив дальнейшего развития исследуемого ряда.При помощи полученной модели ARIMA, оценивающей параметры анализируемого ряда, характеризующего курс криптовалюты, разработана система прогностических оценок на краткосрочный период.Доказано, что использование подобного рода моделей с высоким уровнем достоверности предсказывает будущие корректировки на исследуемом рынке, что обусловливает высокий уровень перспективности их использования при моделировании будущих параметров развития рынка криптовалюты. Это создает основу для выработки механизмов адаптации хозяйствующих субъектов к формирующимся корректировкам ценовых индексов «цифровых денег».

Suggested Citation

  • M. Safiullin R. & A. Abdukaeva A. & L. El’shin A. & М. Сафиуллин Р. & А. Абдукаева А. & Л. Ельшин А., 2018. "Методические Подходы К Прогнозированию Динамики Курса Криптовалют С Применением Инструментов Стохастического Анализа (На Примере Биткоина) // Methodological Approaches To Forecasting Dynamics Of Crypt," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(4), pages 38-51.
  • Handle: RePEc:scn:financ:y:2018:i:4:p:38-51
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/732/501.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Канторович Григорий Гельмутович, 2003. "Лекции: Анализ Временных Рядов," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 7(1), pages 79-103.
    2. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    3. Pieters, Gina & Vivanco, Sofia, 2017. "Financial regulations and price inconsistencies across Bitcoin markets," Information Economics and Policy, Elsevier, vol. 39(C), pages 1-14.
    4. William J. Luther, 2016. "Cryptocurrencies, Network Effects, And Switching Costs," Contemporary Economic Policy, Western Economic Association International, vol. 34(3), pages 553-571, July.
    5. Beate Sauer, 2016. "Virtual Currencies, the Money Market, and Monetary Policy," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 22(2), pages 117-130, May.
    6. Lawrence H. White, 2015. "The Market for Cryptocurrencies," Cato Journal, Cato Journal, Cato Institute, vol. 35(2), pages 383-402, Spring/Su.
    7. Bouoiyour, Jamal & Selmi, Refk, 2015. "Bitcoin Price: Is it really that New Round of Volatility can be on way?," MPRA Paper 65580, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    2. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    3. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    4. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    5. Gina Christelle Pieters, 2017. "Bitcoin Reveals Exchange Rate Manipulation and Detects Capital Controls," 2017 Papers ppi307, Job Market Papers.
    6. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    7. White, Reilly & Marinakis, Yorgos & Islam, Nazrul & Walsh, Steven, 2020. "Is Bitcoin a currency, a technology-based product, or something else?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    8. Pieters, Gina & Vivanco, Sofia, 2017. "Financial regulations and price inconsistencies across Bitcoin markets," Information Economics and Policy, Elsevier, vol. 39(C), pages 1-14.
    9. George Milunovich, 2018. "Cryptocurrencies, Mainstream Asset Classes and Risk Factors: A Study of Connectedness," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 51(4), pages 551-563, December.
    10. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    11. Bruno Ferreira Frascaroli, 2020. "Bitcoin's innovative aspects, return volatility and uncertainty shocks," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 7(3), pages 224-245.
    12. Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.
    13. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    14. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    15. Kliber, Agata & Marszałek, Paweł & Musiałkowska, Ida & Świerczyńska, Katarzyna, 2019. "Bitcoin: Safe haven, hedge or diversifier? Perception of bitcoin in the context of a country’s economic situation — A stochastic volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 246-257.
    16. Omane-Adjepong, Maurice & Alagidede, Paul & Akosah, Nana Kwame, 2019. "Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 105-120.
    17. Gregor Dorfleitner & Carina Lung, 2018. "Cryptocurrencies from the perspective of euro investors: a re-examination of diversification benefits and a new day-of-the-week effect," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 472-494, December.
    18. Park, Sangjin & Jang, Kwahngsoo & Yang, Jae-Suk, 2021. "Information flow between bitcoin and other financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    19. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    20. Anna Wiśniewska, 2018. "The Initial Coin Offering – Challenges And Opportunities," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 7(2), pages 99-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2018:i:4:p:38-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.