IDEAS home Printed from https://ideas.repec.org/a/scn/cememm/v52y2016i4p74-93.html
   My bibliography  Save this article

Сравнительный анализ методов оценки рыночного риска, основанных на величине Value at Risk

Author

Listed:
  • Дробыш И.И.

Abstract

В статье анализируются возможности использования различных методов расчета величины Value at Risk (VaR) при оценке рыночных рисков в условиях российской экономики. Автором проведен анализ временных рядов, показывающих динамику дневных логарифмических доходностей одного из крупных российских паевых инвестиционных фондов (ПИФ), размещающего средства в акциях российских компаний, за 2000-2014 гг. Проверено предположение о нормальном распределении логарифмических доходностей ПИФа. Показано, что в отдельные периоды ряд логарифмических доходностей хорошо аппроксимируется функцией нормального распределения, но на всем диапазоне данных гипотезу о нормальном распределении следует отклонить. Для расчета величины VaR рассмотрены: дельта-нормальный метод и его вариации, метод исторического моделирования и гибридный метод Халла-Вайта. Проверка точности методов расчета величины VaR и их сравнение выполнено посредством верификации методов на основе ретроспективных данных. При этом проверяется число превышений, которые показывает метод расчета величины VaR (событий, когда фактическая абсолютная величина потерь превышает оценочную величину VaR), независимость наступления событий превышения между собой, а также средняя величина превышений фактическими убытками уровня VaR. Дельта-нормальный метод проявляет нестабильность результатов в условиях нестационарной российской экономики. Метод исторического моделирования и метод Халла-Вайта продемонстрировали хорошие стабильные результаты на всем временном интервале тестирования при проверке методом Базельского комитета и тестом Купика (анализ числа событий превышения). Все методы расчета VaR имеют признаки кластеризации (скопления) наступления событий превышения (тест Кристоферсена показал отрицательные результаты). Метод Халла-Вайта показал наименьшую среднюю величину превышений фактическими убытками уровня VaR, что при относительном сравнении методов характеризует его как наиболее точный.

Suggested Citation

  • Дробыш И.И., 2016. "Сравнительный анализ методов оценки рыночного риска, основанных на величине Value at Risk," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 52(4), pages 74-93, октябрь.
  • Handle: RePEc:scn:cememm:v:52:y:2016:i:4:p:74-93
    Note: Москва
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Bologov , Yaroslav, 2013. "A copula-based approach to portfolio credit risk modeling," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 45-66.
    2. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Odeh, Oluwarotimi O. & Featherstone, Allen M. & Sanjoy, Das, 2006. "Predicting Credit Default in an Agricultural Bank: Methods and Issues," 2006 Annual Meeting, February 5-8, 2006, Orlando, Florida 35359, Southern Agricultural Economics Association.
    2. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    3. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    4. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    5. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    6. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    7. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    8. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    9. Amengual, Dante & Fiorentini, Gabriele & Sentana, Enrique, 2013. "Sequential estimation of shape parameters in multivariate dynamic models," Journal of Econometrics, Elsevier, vol. 177(2), pages 233-249.
    10. Dinghai Xu, 2021. "A study on volatility spurious almost integration effect: A threshold realized GARCH approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4104-4126, July.
    11. Baum, Christopher F. & Zerilli, Paola & Chen, Liyuan, 2021. "Stochastic volatility, jumps and leverage in energy and stock markets: Evidence from high frequency data," Energy Economics, Elsevier, vol. 93(C).
    12. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    13. Meriem Rjiba & Michail Tsagris & Hedi Mhalla, 2015. "Bootstrap for Value at Risk Prediction," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(6), pages 362-371.
    14. Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    15. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    16. Casarin, Roberto & Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio, 2013. "Risk management of risk under the Basel Accord: A Bayesian approach to forecasting Value-at-Risk of VIX futures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 183-204.
    17. Liao, Yin, 2013. "The benefit of modeling jumps in realized volatility for risk prediction: Evidence from Chinese mainland stocks," Pacific-Basin Finance Journal, Elsevier, vol. 23(C), pages 25-48.
    18. da Veiga, Bernardo & Chan, Felix & McAleer, Michael, 2008. "Evaluating the impact of market reforms on Value-at-Risk forecasts of Chinese A and B shares," Pacific-Basin Finance Journal, Elsevier, vol. 16(4), pages 453-475, September.
    19. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    20. Paul Bui Quang & Tony Klein & Nam H. Nguyen & Thomas Walther, 2018. "Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH," JRFM, MDPI, vol. 11(2), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:cememm:v:52:y:2016:i:4:p:74-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergei Parinov (email available below). General contact details of provider: http://www.cemi.rssi.ru/emm/home.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.