IDEAS home Printed from https://ideas.repec.org/a/scn/cememm/v50y2014i1p61-79.html
   My bibliography  Save this article

О Договорном Подходе В Моделях Экономики Типа Эрроу-Дебре-Маккензи

Author

Listed:
  • Маракулин В.М.

Abstract

В работе анализируется договорной подход в моделях экономики с производственным сектором. Исследовались как модели с выпуклыми, так и невыпуклыми производственными множествами. Понятийная база теории договоров, разработанная в (Маракулин, 2003, 2011) модифицируется и адаптируется к моделям с производством: уточняются понятие сети договоров, доминирования сетей по коалициям, частичный разрыв договоров и пр. Для модели с невыпуклым производством введено новое понятие маргинально-договорного распределения, которое затем используется в анализе равновесия с ценообразованием по предельным затратам (MCP-равновесие) - применяется в невыпуклом случае вместо вальрасовского равновесия. Основные результаты представлены в виде теорем об эквивалентности равновесий и разного типа договорных распределений. В частности эквивалентность между MCP-равновесием и маргинально-договорными распределениями можно рассматривать как теоретическое обоснование концепции MCP-равновесия в невыпуклых экономиках. В целом работа развивает договорной подход как универсальный метод моделирования условий совершенной конкуренции.

Suggested Citation

  • Маракулин В.М., 2014. "О Договорном Подходе В Моделях Экономики Типа Эрроу-Дебре-Маккензи," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(1), pages 61-79, январь.
  • Handle: RePEc:scn:cememm:v:50:y:2014:i:1:p:61-79
    Note: Новосибирск
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Brown, Donald J., 1991. "Equilibrium analysis with non-convex technologies," Handbook of Mathematical Economics, in: W. Hildenbrand & H. Sonnenschein (ed.), Handbook of Mathematical Economics, edition 1, volume 4, chapter 36, pages 1963-1995, Elsevier.
    2. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    3. Bonnisseau, Jean-Marc & Cornet, Bernard, 1988. "Existence of equilibria when firms follow bounded losses pricing rules," Journal of Mathematical Economics, Elsevier, vol. 17(2-3), pages 119-147, April.
    4. Bonnisseau, Jean-Marc & Cornet, Bernard, 1990. "Existence of Marginal Cost Pricing Equilibria in Economies with Several Nonconvex Firms," Econometrica, Econometric Society, vol. 58(3), pages 661-682, May.
    5. Polterovich, Victor, 1970. "Об Одной Модели Перераспределения Ресурсов [A Model of Resource Redistribution]," MPRA Paper 22205, University Library of Munich, Germany.
    6. Beato, Paulina & Mas-Colell, Andreu, 1985. "On marginal cost pricing with given tax-subsidy rules," Journal of Economic Theory, Elsevier, vol. 37(2), pages 356-365, December.
    7. Marakulin, V.M., 2013. "On the Edgeworth conjecture for production economies with public goods: A contract-based approach," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 189-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. M. Bonnisseau & A. Jamin, 2008. "Equilibria with Increasing Returns: Sufficient Conditions on Bounded Production Allocations," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 10(6), pages 1033-1068, December.
    2. Guoqiang Tian, 2016. "On the existence of price equilibrium in economies with excess demand functions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 5-16, April.
    3. Jean-Marc Bonnisseau, 2000. "The Marginal Pricing Rule in Economies with Infinitely Many Commodities," Econometric Society World Congress 2000 Contributed Papers 0262, Econometric Society.
    4. Fuentes, Matías N., 2011. "Existence of equilibria in economies with externalities and non-convexities in an infinite-dimensional commodity space," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 768-776.
    5. Jean-Marc Bonnisseau & Matías Fuentes, 2020. "Market Failures and Equilibria in Banach Lattices: New Tangent and Normal Cones," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 338-367, February.
    6. Antonio Villar, 1994. "Existence and efficiency of equilibrium in economics with increasing returns to scale: an exposition," Investigaciones Economicas, Fundación SEPI, vol. 18(2), pages 205-243, May.
    7. van den Elzen, Antoon & Kremers, Hans, 2006. "An adjustment process for nonconvex production economies," Journal of Mathematical Economics, Elsevier, vol. 42(1), pages 1-13, February.
    8. Acurio Vásconez, Verónica & Giraud, Gaël & Mc Isaac, Florent & Pham, Ngoc-Sang, 2015. "The effects of oil price shocks in a new-Keynesian framework with capital accumulation," Energy Policy, Elsevier, vol. 86(C), pages 844-854.
    9. Bonnisseau, Jean-Marc & Medecin, Jean-Philippe, 2001. "Existence of marginal pricing equilibria in economies with externalities and non-convexities," Journal of Mathematical Economics, Elsevier, vol. 36(4), pages 271-294, December.
    10. Brown, Donald J. & Heller, Walter P. & Starr, Ross M., 1992. "Two-part marginal cost pricing equilibria: Existence and efficiency," Journal of Economic Theory, Elsevier, vol. 57(1), pages 52-72.
    11. Bonnisseau, Jean-Marc & Meddeb, Moncef, 1999. "Existence of equilibria in economies with increasing returns and infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 287-307, April.
    12. Tian, Guoqiang, 2009. "Implementation in economies with non-convex production technologies unknown to the designer," Games and Economic Behavior, Elsevier, vol. 66(1), pages 526-545, May.
    13. Navid Azizan & Yu Su & Krishnamurthy Dvijotham & Adam Wierman, 2020. "Optimal Pricing in Markets with Nonconvex Costs," Operations Research, INFORMS, vol. 68(2), pages 480-496, March.
    14. Jean-Marc Bonnisseau & Matías Fuentes, 2018. "Market failures and equilibria in Banach lattices," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01960874, HAL.
    15. Hichem Ben-El-Mechaiekh & Philippe Bich & Monique Florenzano, 2009. "General equilibrium and fixed-point theory: a partial survey," PSE-Ecole d'économie de Paris (Postprint) hal-00755998, HAL.
    16. Moriguchi, Chiaki, 1996. "Two-part marginal cost pricing in a pure fixed cost economy," Journal of Mathematical Economics, Elsevier, vol. 26(3), pages 363-385.
    17. Ghirardato, Paolo & Siniscalchi, Marciano, 2018. "Risk sharing in the small and in the large," Journal of Economic Theory, Elsevier, vol. 175(C), pages 730-765.
    18. Jorge Rivera Cayupi, 2004. "A non-convex equilibirum model when producers have many production alternatives," Estudios de Economia, University of Chile, Department of Economics, vol. 31(2 Year 20), pages 165-175, December.
    19. GIRAUD, Gaël, 2000. "An algebraic index theorem for non-smooth economies," LIDAM Discussion Papers CORE 2000016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Antonio Villar Notario, 2000. "On The Efficiency Of Market Equilibrium In Production Economies," Working Papers. Serie AD 2000-17, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:cememm:v:50:y:2014:i:1:p:61-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergei Parinov (email available below). General contact details of provider: http://www.cemi.rssi.ru/emm/home.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.