IDEAS home Printed from https://ideas.repec.org/a/scn/015306/15715694.html
   My bibliography  Save this article

Stability of the regional banking systems in the crisis and post-crisis periods

Author

Listed:
  • Gurova Yelena Pavlovna

    (Federal State Educational Institution of Higher Professional Education «Perm State National Research University»)

Abstract

In connection with the recent crises has become more urgent topic of estimating the probability of bankruptcy of financial institutions. However, do not analyze the level of bankruptcies in the «regional banking systems» and its dependence on certain bank characteristics, the economic situation in the region. The subject of this study is to estimate the probability of medium-sized («non-capital») regional banks bankruptcy. Purpose of the article is to identify the main factors that have the greatest impact on the probability of default of the situation of regional banks. The study used an analytical and theoretical method is conducted econometric analysis. For performance revealed a significant difference in the factors influencing the onset of medium-sized regional situation of default («non-capital») banks, compared with larger banks. First to assess the likelihood of bankruptcy is used the concentration index of banks included in the model and significant macro variables. Results are applicable, from our point of view, the evaluation and more precise definition of the probability of default CBR regional banks.

Suggested Citation

  • Gurova Yelena Pavlovna, 2014. "Stability of the regional banking systems in the crisis and post-crisis periods," Экономика региона, CyberLeninka;Федеральное государственное бюджетное учреждение науки «Институт экономики Уральского отделения Российской академии наук», issue 4, pages 237-245.
  • Handle: RePEc:scn:015306:15715694
    as

    Download full text from publisher

    File URL: http://cyberleninka.ru/article/n/stability-of-the-regional-banking-systems-in-the-crisis-and-post-crisis-periods
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peresetsky, Anatoly, 2013. "Modeling reasons for Russian bank license withdrawal: Unaccounted factors," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 30(2), pages 49-64.
    2. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    3. Anzoategui, Diego & Pería, María Soledad Martínez & Melecky, Martin, 2012. "Bank competition in Russia: An examination at different levels of aggregation," Emerging Markets Review, Elsevier, vol. 13(1), pages 42-57.
    4. Polterovich, Victor & Popov, Vladimir, 2006. "Эволюционная Теория Экономической Политики: Часть I: Опыт Быстрого Развития [An Evolutionary Theory of Economic Policy: Part I: The Experience of Fast Development]," MPRA Paper 22168, University Library of Munich, Germany.
    5. Alexander Karminsky & Alexander Kostrov, 2014. "The probability of default in Russian banking," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 4(1), pages 81-98, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yelena Gurova, 2014. "Stability Of The Regional Banking Systems In The Crisis And Post-Crisis Periods," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 237-245.
    2. Zhivaikina, A. & Peresetsky, A., 2017. "Russian Bank Credit Ratings and Bank License Withdrawal 2012-2016," Journal of the New Economic Association, New Economic Association, vol. 36(4), pages 49-80.
    3. repec:zbw:bofitp:2017_016 is not listed on IDEAS
    4. D. Bidzhoyan S. & Д. Биджоян С., 2018. "Модель Оценки Вероятности Отзыва Лицензии У Российского Банка // Model For Assessing The Probability Of Revocation Of A License From The Russian Bank," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 22(2), pages 26-37.
    5. Alexander Karminsky & Alexander Kostrov & Taras Murzenkov, 2012. "Comparison of default probability models: Russian experience," HSE Working papers WP BRP 06/FE/2012, National Research University Higher School of Economics.
    6. Maiya Anokhina & Henry Penikas & Victor Petrov, 2014. "Identifying SIFI Determinants for Global Banks and Insurance Companies: Implications for D-SIFIs in Russia," DEM Working Papers Series 085, University of Pavia, Department of Economics and Management.
    7. Alexander Karminsky & Alexander Kostrov, 2014. "The probability of default in Russian banking," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 4(1), pages 81-98, June.
    8. Denis Shibitov & Mariam Mamedli, 2019. "The finer points of model comparison in machine learning: forecasting based on russian banks’ data," Bank of Russia Working Paper Series wps43, Bank of Russia.
    9. Mäkinen, Mikko & Solanko, Laura, 2017. "Determinants of bank closures : Do changes of CAMEL variables matter?," BOFIT Discussion Papers 16/2017, Bank of Finland, Institute for Economies in Transition.
    10. Mikko Makinen & Laura Solanko, 2018. "Determinants of Bank Closures: Do Levels or Changes of CAMEL Variables Matter?," Russian Journal of Money and Finance, Bank of Russia, vol. 77(2), pages 3-21, June.
    11. Karminsky, A. & Kostrov, A., 2013. "Modeling the Default Probabilities of Russian Banks: Extended Abillities," Journal of the New Economic Association, New Economic Association, vol. 17(1), pages 64-86.
    12. Bekirova, Olga & Zubarev, Andrey, 2023. "Determinants of risk, profitability and default probability of Russian banks," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 71, pages 20-38.
    13. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    14. Perugini, Cristiano, 2020. "Patterns and drivers of household income dynamics in Russia: The role of access to credit," BOFIT Discussion Papers 11/2020, Bank of Finland Institute for Emerging Economies (BOFIT).
    15. Grzegorz W. Kolodko, 2009. "A Two-thirds Rate of Success: Polish Transformation and Economic Development, 1989-2008," WIDER Working Paper Series RP2009-14, World Institute for Development Economic Research (UNU-WIDER).
    16. Kudrin, A. & Gurvich, E., 2015. "Government Stimulus or Economic Incentives?," Journal of the New Economic Association, New Economic Association, vol. 26(2), pages 179-186.
    17. Kočenda, Evžen & Iwasaki, Ichiro, 2020. "Bank survival in Central and Eastern Europe," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 860-878.
    18. Chau H. A. Le, 2016. "Macro-financial linkages and bank behaviour: evidence from the second-round effects of the global financial crisis on East Asia," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 6(3), pages 365-387, December.
    19. Larysa Tamilina & Natalya Tamilina, 2014. "Heterogeneity in Institutional Effects on Economic Growth: Theory and Empirical Evidence," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 11(2), pages 205-249, December.
    20. Schupp, Fabian & Silbermann, Leonid, 2017. "The Role of Structural Funding for Stability in the German Banking Sector," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168166, Verein für Socialpolitik / German Economic Association.
    21. Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:015306:15715694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CyberLeninka (email available below). General contact details of provider: http://cyberleninka.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.