IDEAS home Printed from https://ideas.repec.org/a/sbr/abstra/v58y2006i3p214-233.html
   My bibliography  Save this article

Estimating probabilities of default for German savings banks and credit cooperatives

Author

Listed:
  • Daniel Porath

Abstract

Savings banks and cooperative banks are important players in the German financial market. However, we know very little about their default risk, because these banks usually resolve financial distress within their own organizations, which means that outsiders cannot observe defaults. In this paper I use a new dataset that contains information about financial distress and financial strength of all German savings banks and cooperative banks. The Deutsche Bundesbank has gathered the data for microprudential supervision. Thus, the data have never before been exploited for statistical risk assessment. I use the data to identify the main drivers of savings banks’ and cooperative banks’ risk and to detect structural differences between the two groups. To do so, I estimate a default prediction model. I also analyze the impact of macroeconomic information for forecasting banks’ defaults. Recent findings for the U.S. have cast some doubt on the usefulness of macroeconomic information for banks’ risk assessment. Contrary to recent literature, I find that macroeconomic information significantly improves default forecasts.

Suggested Citation

  • Daniel Porath, 2006. "Estimating probabilities of default for German savings banks and credit cooperatives," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 58(3), pages 214-233, July.
  • Handle: RePEc:sbr:abstra:v:58:y:2006:i:3:p:214-233
    as

    Download full text from publisher

    File URL: http://www.vhb.de/sbr/pdfarchive.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cole, Rebel A. & Gunther, Jeffery W., 1995. "Separating the likelihood and timing of bank failure," Journal of Banking & Finance, Elsevier, vol. 19(6), pages 1073-1089, September.
    2. Molina, Carlos A., 2002. "Predicting bank failures using a hazard model: the Venezuelan banking crisis," Emerging Markets Review, Elsevier, vol. 3(1), pages 31-50, March.
    3. Sinkey, Joseph F, Jr, 1975. "A Multivariate Statistical Analysis of the Characteristics of Problem Banks," Journal of Finance, American Finance Association, vol. 30(1), pages 21-36, March.
    4. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    5. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    6. Porath, Daniel, 2004. "Estimating probabilities of default for German savings banks and credit cooperatives," Discussion Paper Series 2: Banking and Financial Studies 2004,06, Deutsche Bundesbank.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    9. Krahnen, Jan P. & Schmidt, Reinhard H. (ed.), 2004. "The German Financial System," OUP Catalogue, Oxford University Press, number 9780199253166.
    10. Hamerle, Alfred & Liebig, Thilo & Scheule, Harald, 2004. "Forecasting Credit Portfolio Risk," Discussion Paper Series 2: Banking and Financial Studies 2004,01, Deutsche Bundesbank.
    11. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    12. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cole, Rebel A. & Wu, Qiongbing, 2009. "Is hazard or probit more accurate in predicting financial distress? Evidence from U.S. bank failures," MPRA Paper 24688, University Library of Munich, Germany, revised 01 Aug 2010.
    2. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    3. Ehab Zaki & Rahim Bah & Ananth Rao, 2011. "Assessing probabilities of financial distress of banks in UAE," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 7(3), pages 304-320, June.
    4. Pavlos Almanidis & Robin C. Sickles, 2016. "Banking Crises, Early Warning Models, and Efficiency," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 331-364, Springer.
    5. Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
    6. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    7. Fiordelisi, Franco & Mare, Davide Salvatore, 2013. "Probability of default and efficiency in cooperative banking," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 30-45.
    8. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    9. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    10. Swami, Onkar Shivraj & Vishnu Kumar, N. Arun & Baruah, Palash, 2012. "Determinants of the exit decision of foreign banks in India," MPRA Paper 38722, University Library of Munich, Germany.
    11. repec:zbw:bofitp:2004_021 is not listed on IDEAS
    12. Пересецкий А.А., 2007. "Методы Оценки Вероятности Дефолта Банков," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 43(3), июль.
    13. Milagros Vivel-Búa & Rubén Lado-Sestayo & Luis Otero-González, 2016. "Impact of location on the probability of default in the Spanish lodging industry," Tourism Economics, , vol. 22(3), pages 593-607, June.
    14. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    15. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    16. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    17. Alexander Hölzl & Sebastian Lobe, 2016. "Predicting above-median and below-median growth rates," Review of Managerial Science, Springer, vol. 10(1), pages 105-133, January.
    18. repec:zbw:bofrdp:2009_035 is not listed on IDEAS
    19. Martin Kukuk & Michael Rönnberg, 2013. "Corporate credit default models: a mixed logit approach," Review of Quantitative Finance and Accounting, Springer, vol. 40(3), pages 467-483, April.
    20. Bruneau, C. & de Bandt, O. & El Amri, W., 2012. "Macroeconomic fluctuations and corporate financial fragility," Journal of Financial Stability, Elsevier, vol. 8(4), pages 219-235.
    21. Kick, Thomas & Koetter, Michael, 2007. "Slippery slopes of stress: Ordered failure events in German banking," Journal of Financial Stability, Elsevier, vol. 3(2), pages 132-148, July.
    22. Ando, Tomohiro, 2009. "Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1925-1939, April.

    More about this item

    Keywords

    Bank Failure; Default Probability; Panel Binary Response Analysis;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbr:abstra:v:58:y:2006:i:3:p:214-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: sbr (email available below). General contact details of provider: https://edirc.repec.org/data/fbmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.