IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v48y2019i3p608-641.html
   My bibliography  Save this article

Enlisting Supervised Machine Learning in Mapping Scientific Uncertainty Expressed in Food Risk Analysis

Author

Listed:
  • Akos Rona-Tas
  • Antoine Cornuéjols
  • Sandrine Blanchemanche
  • Antonin Duroy
  • Christine Martin

Abstract

Recently, both sociology of science and policy research have shown increased interest in scientific uncertainty. To contribute to these debates and create an empirical measure of scientific uncertainty, we inductively devised two systems of classification or ontologies to describe scientific uncertainty in a large corpus of food safety risk assessments with the help of machine learning (ML). We ask three questions: (1) Can we use ML to assist with coding complex documents such as food safety risk assessments on a difficult topic like scientific uncertainty? (2) Can we assess using ML the quality of the ontologies we devised? (3) And, finally, does the quality of our ontologies depend on social factors? We found that ML can do surprisingly well in its simplest form identifying complex meanings, and it does not benefit from adding certain types of complexity to the analysis. Our ML experiments show that in one ontology which is a simple typology, against expectations, semantic opposites attract each other and support the taxonomic structure of the other. And finally, we found some evidence that institutional factors do influence how well our taxonomy of uncertainty performs, but its ability to capture meaning does not vary greatly across the time, institutional context, and cultures we investigated.

Suggested Citation

  • Akos Rona-Tas & Antoine Cornuéjols & Sandrine Blanchemanche & Antonin Duroy & Christine Martin, 2019. "Enlisting Supervised Machine Learning in Mapping Scientific Uncertainty Expressed in Food Risk Analysis," Sociological Methods & Research, , vol. 48(3), pages 608-641, August.
  • Handle: RePEc:sae:somere:v:48:y:2019:i:3:p:608-641
    DOI: 10.1177/0049124117729701
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124117729701
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124117729701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hausken, Kjell, 2021. "The precautionary principle as multi-period games where players have different thresholds for acceptable uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernhardt, Lea & Dewenter, Ralf & Thomas, Tobias, 2023. "Measuring partisan media bias in US newscasts from 2001 to 2012," European Journal of Political Economy, Elsevier, vol. 78(C).
    2. Rauh, Christian, 2015. "Communicating supranational governance? The salience of EU affairs in the German Bundestag, 1991–2013," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(1), pages 116-138.
    3. Julia Seiermann, 2018. "Only Words? How Power in Trade Agreement Texts Affects International Trade Flows," UNCTAD Blue Series Papers 80, United Nations Conference on Trade and Development.
    4. Arthur Dyevre & Nicolas Lampach, 2021. "Issue attention on international courts: Evidence from the European Court of Justice," The Review of International Organizations, Springer, vol. 16(4), pages 793-815, October.
    5. Dewenter, Ralf & Dulleck, Uwe & Thomas, Tobias, 2018. "The political coverage index and its application to government capture," Research Papers 6, EcoAustria – Institute for Economic Research.
    6. Pastwa, Anna M. & Shrestha, Prabal & Thewissen, James & Torsin, Wouter, 2021. "Unpacking the black box of ICO white papers: a topic modeling approach," LIDAM Discussion Papers LFIN 2021018, Université catholique de Louvain, Louvain Finance (LFIN).
    7. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    8. Milena Djourelova & Ruben Durante, 2019. "Media attention and strategic timing in politics: Evidence from U.S. presidential executive orders," Economics Working Papers 1675, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Mohamed M. Mostafa, 2023. "A one-hundred-year structural topic modeling analysis of the knowledge structure of international management research," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3905-3935, August.
    10. Erkan Işığıçok & Sadullah Çelik & Dilek Özdemir Yılmaz, 2023. "Analysis of Skills and Qualifications Required in Data Scientist Job Postings Based on the Pareto Analysis Perspective Using Text Mining," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 10-25, December.
    11. Yuting Chen & Don Bredin & Valerio Potì & Roman Matkovskyy, 2022. "COVID risk narratives: a computational linguistic approach to the econometric identification of narrative risk during a pandemic," Digital Finance, Springer, vol. 4(1), pages 17-61, March.
    12. Purwoko Haryadi Santoso & Edi Istiyono & Haryanto & Wahyu Hidayatulloh, 2022. "Thematic Analysis of Indonesian Physics Education Research Literature Using Machine Learning," Data, MDPI, vol. 7(11), pages 1-41, October.
    13. Markus Eberhardt & Giovanni Facchini & Valeria Rueda, 2023. "Gender Differences in Reference Letters: Evidence from the Economics Job Market," The Economic Journal, Royal Economic Society, vol. 133(655), pages 2676-2708.
    14. Rauh, Christian, 2018. "Validating a sentiment dictionary for German political language—a workbench note," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(4), pages 319-343.
    15. Ferrara, Federico M. & Masciandaro, Donato & Moschella, Manuela & Romelli, Davide, 2022. "Political voice on monetary policy: Evidence from the parliamentary hearings of the European Central Bank," European Journal of Political Economy, Elsevier, vol. 74(C).
    16. James Evans, 2022. "From Text Signals to Simulations: A Review and Complement to Text as Data by Grimmer, Roberts & Stewart (PUP 2022)," Sociological Methods & Research, , vol. 51(4), pages 1868-1885, November.
    17. Camilla Salvatore & Silvia Biffignandi & Annamaria Bianchi, 2022. "Corporate Social Responsibility Activities Through Twitter: From Topic Model Analysis to Indexes Measuring Communication Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1217-1248, December.
    18. Jason Anastasopoulos & George J. Borjas & Gavin G. Cook & Michael Lachanski, 2018. "Job Vacancies, the Beveridge Curve, and Supply Shocks: The Frequency and Content of Help-Wanted Ads in Pre- and Post-Mariel Miami," NBER Working Papers 24580, National Bureau of Economic Research, Inc.
    19. Yang Bao & Anindya Datta, 2014. "Simultaneously Discovering and Quantifying Risk Types from Textual Risk Disclosures," Management Science, INFORMS, vol. 60(6), pages 1371-1391, June.
    20. Carly Knight, 2022. "When Corporations Are People: Agent Talk and the Development of Organizational Actorhood, 1890–1934," Sociological Methods & Research, , vol. 51(4), pages 1634-1680, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:48:y:2019:i:3:p:608-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.