IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v48y2019i1p3-33.html
   My bibliography  Save this article

Model-Based and Design-Based Inference: Reducing Bias Due to Differential Recruitment in Respondent-Driven Sampling

Author

Listed:
  • Yongren Shi
  • Christopher J. Cameron
  • Douglas D. Heckathorn

Abstract

Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial assumption can produce biased estimates. We compare two different inference approaches: design-based inference, which relies on the known probability of selection in sampling, and model-based inference, which is based on models of human recruitment behavior and the social context within which sampling is conducted. The advantage of the latter approach is that when the violation of an assumption has been shown to produce biased population estimates, the model can be adjusted to more accurately reflect actual recruitment behavior, and thereby control for the source of bias. To illustrate this process, we focus on three sources of bias, differential effectiveness of recruitment, a form of nonresponse bias, and bias resulting from status differentials that produce asymmetries in recruitment behavior. We first present diagnostics for identifying types of bias and then present new forms of a model-based RDS estimator that controls for each type of bias. In this way, we show the unique advantages of a model-based estimator.

Suggested Citation

  • Yongren Shi & Christopher J. Cameron & Douglas D. Heckathorn, 2019. "Model-Based and Design-Based Inference: Reducing Bias Due to Differential Recruitment in Respondent-Driven Sampling," Sociological Methods & Research, , vol. 48(1), pages 3-33, February.
  • Handle: RePEc:sae:somere:v:48:y:2019:i:1:p:3-33
    DOI: 10.1177/0049124116672682
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124116672682
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124116672682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Krista J. Gile & Mark S. Handcock, 2015. "Network model-assisted inference from respondent-driven sampling data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 619-639, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    2. Lee Sunghee & Ong Ai Rene & Elliott Michael, 2020. "Exploring Mechanisms of Recruitment and Recruitment Cooperation in Respondent Driven Sampling," Journal of Official Statistics, Sciendo, vol. 36(2), pages 339-360, June.
    3. Malmros Jens & Masuda Naoki & Britton Tom, 2016. "Random Walks on Directed Networks: Inference and Respondent-Driven Sampling," Journal of Official Statistics, Sciendo, vol. 32(2), pages 433-459, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:48:y:2019:i:1:p:3-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.