IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v14y2024i2p21582440241257681.html
   My bibliography  Save this article

An Enhanced IHHO-LSTM Model for Predicting Online Public Opinion Trends in Public Health Emergencies

Author

Listed:
  • Guangyu Mu
  • Jiaxue Li
  • Zehan Liao
  • Ziye Yang

Abstract

Social networks accelerate information communication in public health emergencies. Some negative information may cause an outbreak of public opinion crisis. Accurately predicting online public opinion trends can help the relevant departments take timely and effective measures to cope with risks. Therefore, this research proposes a prediction model incorporating the swarm intelligence optimization algorithm and the deep learning method. In this model, we improve the Harris Hawks Optimization (HHO) algorithm by introducing the Cauchy distribution function, the stochastic contraction exponential function, and the adaptive inertia weight. Then we utilize the improved HHO (IHHO) algorithm to optimize the hyperparameters of the deep learning method LSTM, including the learning rate and the number of neurons in the hidden layer. Finally, we construct the IHHO-LSTM model to make predictions in three public health emergencies. The experiments verify that the proposed model outperforms other single and hybrid models. The MAPE values reduce by 78.34%, 54.46%, and 46.42% relative to the average values of the three single models. Compared with the mean values of the two hybrid models, the MAPE values decrease by 47.69%, 18.45%, and 5.78%. The IHHO-LSTM model can be applied to public opinion early warning and reversal identification, providing a reference in public opinion management.

Suggested Citation

  • Guangyu Mu & Jiaxue Li & Zehan Liao & Ziye Yang, 2024. "An Enhanced IHHO-LSTM Model for Predicting Online Public Opinion Trends in Public Health Emergencies," SAGE Open, , vol. 14(2), pages 21582440241, June.
  • Handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241257681
    DOI: 10.1177/21582440241257681
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440241257681
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440241257681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanan Zuo & Fengxiang Jin & Min Ji & Zhenjin Li & Jiutao Yang, 2023. "Disaster Risk Regionalization and Prediction of Corn Thrips Combined with Cloud Model: A Case Study of Shandong Province, China," Land, MDPI, vol. 12(3), pages 1-20, March.
    2. Jianhong Chen & Shuyue Du & Shan Yang, 2022. "Mining and Evolution Analysis of Network Public Opinion Concerns of Stakeholders in Hot Social Events," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    3. Meng Cai & Han Luo & Xiao Meng & Ying Cui & Wei Wang, 2022. "Influence of information attributes on information dissemination in public health emergencies," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-22, December.
    4. Chen, Wei & Zhang, Haoyu & Jia, Lifen, 2022. "A novel two-stage method for well-diversified portfolio construction based on stock return prediction using machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    5. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    6. Fan, Dongyan & Sun, Hai & Yao, Jun & Zhang, Kai & Yan, Xia & Sun, Zhixue, 2021. "Well production forecasting based on ARIMA-LSTM model considering manual operations," Energy, Elsevier, vol. 220(C).
    7. Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    2. Ma, Bin & Guo, Xing & Li, Penghui, 2023. "Adaptive energy management strategy based on a model predictive control with real-time tuning weight for hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    3. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    4. Agbessi Akuété Pierre & Salami Adekunlé Akim & Agbosse Kodjovi Semenyo & Birregah Babiga, 2023. "Peak Electrical Energy Consumption Prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU Approaches," Energies, MDPI, vol. 16(12), pages 1-12, June.
    5. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    6. Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
    7. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    8. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    9. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    10. Sareen, Karan & Panigrahi, Bijaya Ketan & Shikhola, Tushar & Sharma, Rajneesh, 2023. "An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction," Energy, Elsevier, vol. 278(C).
    11. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    12. Zhang, Haipeng & Wang, Jianzhou & Qian, Yuansheng & Li, Qiwei, 2024. "Point and interval wind speed forecasting of multivariate time series based on dual-layer LSTM," Energy, Elsevier, vol. 294(C).
    13. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    14. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    15. Cardo-Miota, Javier & Trivedi, Rohit & Patra, Sandipan & Khadem, Shafi & Bahloul, Mohamed, 2024. "Data-driven approach for day-ahead System Non-Synchronous Penetration forecasting: A comprehensive framework, model development and analysis," Applied Energy, Elsevier, vol. 362(C).
    16. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    17. Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).
    18. Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
    19. Chen, Hang & Wei, Shanbi & Yang, Wei & Liu, Shanchao, 2023. "Input wind speed forecasting for wind turbines based on spatio-temporal correlation," Renewable Energy, Elsevier, vol. 216(C).
    20. Anna Samnioti & Vassilis Gaganis, 2023. "Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part II," Energies, MDPI, vol. 16(18), pages 1-53, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241257681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.