IDEAS home Printed from https://ideas.repec.org/a/sae/sagope/v14y2024i2p21582440241257681.html
   My bibliography  Save this article

An Enhanced IHHO-LSTM Model for Predicting Online Public Opinion Trends in Public Health Emergencies

Author

Listed:
  • Guangyu Mu
  • Jiaxue Li
  • Zehan Liao
  • Ziye Yang

Abstract

Social networks accelerate information communication in public health emergencies. Some negative information may cause an outbreak of public opinion crisis. Accurately predicting online public opinion trends can help the relevant departments take timely and effective measures to cope with risks. Therefore, this research proposes a prediction model incorporating the swarm intelligence optimization algorithm and the deep learning method. In this model, we improve the Harris Hawks Optimization (HHO) algorithm by introducing the Cauchy distribution function, the stochastic contraction exponential function, and the adaptive inertia weight. Then we utilize the improved HHO (IHHO) algorithm to optimize the hyperparameters of the deep learning method LSTM, including the learning rate and the number of neurons in the hidden layer. Finally, we construct the IHHO-LSTM model to make predictions in three public health emergencies. The experiments verify that the proposed model outperforms other single and hybrid models. The MAPE values reduce by 78.34%, 54.46%, and 46.42% relative to the average values of the three single models. Compared with the mean values of the two hybrid models, the MAPE values decrease by 47.69%, 18.45%, and 5.78%. The IHHO-LSTM model can be applied to public opinion early warning and reversal identification, providing a reference in public opinion management.

Suggested Citation

  • Guangyu Mu & Jiaxue Li & Zehan Liao & Ziye Yang, 2024. "An Enhanced IHHO-LSTM Model for Predicting Online Public Opinion Trends in Public Health Emergencies," SAGE Open, , vol. 14(2), pages 21582440241, June.
  • Handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241257681
    DOI: 10.1177/21582440241257681
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/21582440241257681
    Download Restriction: no

    File URL: https://libkey.io/10.1177/21582440241257681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241257681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.