IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v235y2021i5p783-797.html
   My bibliography  Save this article

Early fault diagnosis of ball screws based on 1-D convolution neural network and orthogonal design

Author

Listed:
  • Chen Yin
  • Yulin Wang
  • Yan He
  • Lu Liu
  • Yan Wang
  • Guannan Yue

Abstract

Ball screws, the most frequently used mechanical components to transform rotary motion into linear motion, can directly affect the precision and service life of engineering machines. Once the efficiency and accuracy of ball screws degrades, the performance and safety of machines are hard to guarantee. Conventional fault diagnosis researches of ball screws are mainly focused on ordinary faults such as preload loss and wear, and lack of the researches on early faults such as lubrication degradation which may progress into the ordinary faults. Additionally, the fault diagnosis models proposed in previous studies divide the fault diagnosis into two separated stages: feature extraction and fault classification, which prevents the usage for real-time applications. The specifically designed algorithm in features extraction stage may be also not workable on other objects. To tackle these drawbacks, this paper proposes a highly accurate early fault diagnosis model of ball screws based on a state-of-the-art deep learning technique, called One-Dimensional Convolutional Neural Network (1-D CNN). Experiments simulating the lubrication degradation of ball screws are specially designed for the early fault diagnosis of the ball screws. Moreover, a concise and efficient approach based on orthogonal design is exploited to scientifically obtain the optimal parameters of the 1-D CNN. The results of a case study verify the superiority of the proposed method in establishing a highly accurate 1-D CNN based fault diagnosis model.

Suggested Citation

  • Chen Yin & Yulin Wang & Yan He & Lu Liu & Yan Wang & Guannan Yue, 2021. "Early fault diagnosis of ball screws based on 1-D convolution neural network and orthogonal design," Journal of Risk and Reliability, , vol. 235(5), pages 783-797, October.
  • Handle: RePEc:sae:risrel:v:235:y:2021:i:5:p:783-797
    DOI: 10.1177/1748006X21992886
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X21992886
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X21992886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jialin Li & Xueyi Li & David He & Yongzhi Qu, 2020. "A domain adaptation model for early gear pitting fault diagnosis based on deep transfer learning network," Journal of Risk and Reliability, , vol. 234(1), pages 168-182, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianliang He & Yuxin Sun & Chen Yin & Yan He & Yulin Wang, 2023. "Cross-domain adaptation network based on attention mechanism for tool wear prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3365-3387, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamil, Faras & Verstraeten, Timothy & Nowé, Ann & Peeters, Cédric & Helsen, Jan, 2022. "A deep boosted transfer learning method for wind turbine gearbox fault detection," Renewable Energy, Elsevier, vol. 197(C), pages 331-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:235:y:2021:i:5:p:783-797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.