IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v230y2016i6p561-569.html
   My bibliography  Save this article

Reliability analysis of hybrid multi-carrier energy systems based on entropy-based Markov model

Author

Listed:
  • Xilin Zhao
  • Fei Liu
  • Bo Fu
  • Na Fang

Abstract

Various new technologies for conversion between different forms of energy promote the appearance of hybrid multi-carrier energy system. For the purpose of optimized dispatch of multi-carrier energy and the security requirement of energy system, the reliability of this kind of energy system needs to be discussed. This article proposes a method based on entropy-based Markov model to analyze the reliability of hybrid multi-carrier energy system. First, the method to obtain the reliability of individual energy carrier is discussed. Second, the characteristic of entropy-based Markov model is analyzed. The method is shown to be an effective technique to obtain the reliability of the whole multi-carrier energy system depending on the reliability of individual energy carrier. Then, the fusion process to obtain the reliability of whole multi-carrier energy system is described. The result indicates that the reliability of the whole system is the reliability synthesized of individual energy supply and can be treated as a factor for the optimized process of multi-carrier energy dispatch. The effectiveness of the method is demonstrated by some examples.

Suggested Citation

  • Xilin Zhao & Fei Liu & Bo Fu & Na Fang, 2016. "Reliability analysis of hybrid multi-carrier energy systems based on entropy-based Markov model," Journal of Risk and Reliability, , vol. 230(6), pages 561-569, December.
  • Handle: RePEc:sae:risrel:v:230:y:2016:i:6:p:561-569
    DOI: 10.1177/1748006X16663056
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X16663056
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X16663056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    2. Koeppel, Gaudenz & Andersson, Göran, 2009. "Reliability modeling of multi-carrier energy systems," Energy, Elsevier, vol. 34(3), pages 235-244.
    3. A. M. Elaiw & X. Xia & A. M. Shehata, 2013. "Combined Heat and Power Dynamic Economic Dispatch with Emission Limitations Using Hybrid DE-SQP Method," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, November.
    4. Zong Woo Geem, 2013. "Economic Dispatch Using Parameter-Setting-Free Harmony Search," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-5, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    2. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    3. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    4. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant," Applied Energy, Elsevier, vol. 351(C).
    5. Jan Abrell and Hannes Weigt, 2016. "Investments in a Combined Energy Network Model: Substitution between Natural Gas and Electricity?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. McLarty, Dustin & Panossian, Nadia & Jabbari, Faryar & Traverso, Alberto, 2019. "Dynamic economic dispatch using complementary quadratic programming," Energy, Elsevier, vol. 166(C), pages 755-764.
    7. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    8. Xianzheng Zhou & Chuangxin Guo & Yifei Wang & Wanqi Li, 2017. "Optimal Expansion Co-Planning of Reconfigurable Electricity and Natural Gas Distribution Systems Incorporating Energy Hubs," Energies, MDPI, vol. 10(1), pages 1-22, January.
    9. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    10. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    11. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    12. Zhang, Jintao & Bagtzoglou, Yiannis & Zhu, Jin & Li, Baikun & Zhang, Wei, 2023. "Fragility-based system performance assessment of critical power infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
    14. Wang, Sheng & Shao, Changzheng & Ding, Yi & Yan, Jinyue, 2019. "Operational reliability of multi-energy customers considering service-based self-scheduling," Applied Energy, Elsevier, vol. 254(C).
    15. Stoppato, Anna & Cavazzini, Giovanna & Ardizzon, Guido & Rossetti, Antonio, 2014. "A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area," Energy, Elsevier, vol. 76(C), pages 168-174.
    16. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    17. Yazdani Damavandi, Maziar & Kiaei, Iman & Sheikh-El-Eslami, Mohamad Kazem & Seifi, Hossein, 2011. "New approach to gas network modeling in unit commitment," Energy, Elsevier, vol. 36(10), pages 6243-6250.
    18. Kapil Gnawali & Kuk Heon Han & Zong Woo Geem & Kyung Soo Jun & Kyung Taek Yum, 2019. "Economic Dispatch Optimization of Multi-Water Resources: A Case Study of an Island in South Korea," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    19. Lei, Yunkai & Hou, Kai & Wang, Yue & Jia, Hongjie & Zhang, Pei & Mu, Yunfei & Jin, Xiaolong & Sui, Bingyan, 2018. "A new reliability assessment approach for integrated energy systems: Using hierarchical decoupling optimization framework and impact-increment based state enumeration method," Applied Energy, Elsevier, vol. 210(C), pages 1237-1250.
    20. Vahid Amir & Shahram Jadid & Mehdi Ehsan, 2017. "Optimal Design of a Multi-Carrier Microgrid (MCMG) Considering Net Zero Emission," Energies, MDPI, vol. 10(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:230:y:2016:i:6:p:561-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.