IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v227y2013i1p16-27.html
   My bibliography  Save this article

A new algorithm for variance-based importance measures and importance kernel sensitivity

Author

Listed:
  • Changcong Zhou
  • Zhenzhou Lu
  • Guijie Li

Abstract

Variance-based importance measure has proven itself as an effective tool to reflect the effects of input variables on the output. Owing to the desirable properties, researchers have paid lots of attention to improving efficiency in computing a variance-based importance measure. Based on the theory of point estimate, this article proposes a new algorithm, decomposing the importance measure into inner and outer parts, and computing each part with a point estimate method. In order to discuss the impacts on the variance-based importance measure from distribution parameters of input variables, a new concept of kernel sensitivity of the variance-based importance measure is put forward, with solving algorithms respectively, based on numerical simulation and point estimate established as well. For cases where the performance function with independent and normally distributed input variables is expressed by a linear or quadratic polynomial without cross-terms, analytical results of the variance-based importance measure and the kernel sensitivity are derived. Numerical and engineering examples have been employed to illustrate the applicability of the proposed concept and algorithm.

Suggested Citation

  • Changcong Zhou & Zhenzhou Lu & Guijie Li, 2013. "A new algorithm for variance-based importance measures and importance kernel sensitivity," Journal of Risk and Reliability, , vol. 227(1), pages 16-27, February.
  • Handle: RePEc:sae:risrel:v:227:y:2013:i:1:p:16-27
    DOI: 10.1177/1748006X12467590
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X12467590
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X12467590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    2. Yu, W. & Harris, T.J., 2009. "Parameter uncertainty effects on variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 596-603.
    3. Tong, Charles, 2010. "Self-validated variance-based methods for sensitivity analysis of model outputs," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 301-309.
    4. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    5. Castillo, Enrique & Mínguez, Roberto & Castillo, Carmen, 2008. "Sensitivity analysis in optimization and reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1788-1800.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luyi Li & Zhenzhou Lu, 2016. "A new algorithm for importance analysis of the inputs with distribution parameter uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3065-3077, October.
    2. Yishang Zhang & Yongshou Liu & Xufeng Yang & Bin Zhao, 2015. "An efficient Kriging method for global sensitivity of structural reliability analysis with non-probabilistic convex model," Journal of Risk and Reliability, , vol. 229(5), pages 442-455, October.
    3. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    4. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    5. Wenbin Ruan & Zhenzhou Lu & Longfei Tian, 2013. "A modified variance-based importance measure and its solution by state dependent parameter," Journal of Risk and Reliability, , vol. 227(1), pages 3-15, February.
    6. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    7. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    8. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    9. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Hao, Wenrui & Lu, Zhenzhou & Wei, Pengfei, 2013. "Uncertainty importance measure for models with correlated normal variables," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 48-58.
    11. Liu, Xing & Ferrario, Elisa & Zio, Enrico, 2019. "Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 423-434.
    12. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Moment‐Independent Sensitivity Analysis Using Copula," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 210-222, February.
    14. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.
    15. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    16. Tong, Ming-Na & Zhao, Yan-Gang & Lu, Zhao-Hui, 2021. "Normal transformation for correlated random variables based on L-moments and its application in reliability engineering," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    17. Zhai, Qingqing & Yang, Jun & Xie, Min & Zhao, Yu, 2014. "Generalized moment-independent importance measures based on Minkowski distance," European Journal of Operational Research, Elsevier, vol. 239(2), pages 449-455.
    18. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Uncertainty Importance Analysis Using Parametric Moment Ratio Functions," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 223-234, February.
    19. Xing Pan & Lunhu Hu & Ziling Xin & Shenghan Zhou & Yanmei Lin & Yong Wu, 2018. "Risk Scenario Generation Based on Importance Measure Analysis," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    20. Xiong, Qingwen & Du, Peng & Deng, Jian & Huang, Daishun & Song, Gongle & Qian, Libo & Wu, Zenghui & Luo, Yuejian, 2022. "Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:227:y:2013:i:1:p:16-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.