Probabilistic risk assessment framework for software propagation analysis of failures
Author
Abstract
Suggested Citation
DOI: 10.1243/1748006XJRR241
Download full text from publisher
References listed on IDEAS
- Zhu, Dongfeng & Mosleh, Ali & Smidts, Carol, 2007. "A framework to integrate software behavior into dynamic probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1733-1755.
- Bin Li & Ming Li & Ken Chen & Carol Smidts, 2006. "Integrating Software into PRA: A Software‐Related Failure Mode Taxonomy," Risk Analysis, John Wiley & Sons, vol. 26(4), pages 997-1012, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
- Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Brissaud, Florent & Smidts, Carol & Barros, Anne & Bérenguer, Christophe, 2011. "Dynamic reliability of digital-based transmitters," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 793-813.
- Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Nejad, Hamed S. & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Automatic generation of event sequence diagrams for guiding simulation based dynamic probabilistic risk assessment (SIMPRA) of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Thieme, Christoph A. & Mosleh, Ali & Utne, Ingrid B. & Hegde, Jeevith, 2020. "Incorporating software failure in risk analysis – Part 1: Software functional failure mode classification," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
- Thieme, Christoph A. & Mosleh, Ali & Utne, Ingrid B. & Hegde, Jeevith, 2020. "Incorporating software failure in risk analysis––Part 2: Risk modeling process and case study," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
More about this item
Keywords
probabilistic risk assessment; software fault propagation; software reliability; system failure;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:224:y:2010:i:2:p:113-135. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.