IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v222y2008i2p95-103.html
   My bibliography  Save this article

Multistate systems with static performance- dependent fault coverage

Author

Listed:
  • G Levitin
  • S V Amari

Abstract

The paper suggests a new fault coverage model for the case when the effectiveness of recovery mechanisms in a subsystem depends on the entire performance level of this subsystem. Examples of this effect can be found in computing systems, electrical power distribution networks, communication systems, etc. The paper presents a modification of the generalized reliability block diagram (RBD) method for evaluating reliability and performance indices of complex multistate series-parallel systems with performance-dependent fault coverage under the assumption that the system state cannot change during the task execution. The suggested method based on a universal generating function technique allows the system performance distribution to be obtained using a straightforward recursive procedure. Illustrative examples are presented.

Suggested Citation

  • G Levitin & S V Amari, 2008. "Multistate systems with static performance- dependent fault coverage," Journal of Risk and Reliability, , vol. 222(2), pages 95-103, June.
  • Handle: RePEc:sae:risrel:v:222:y:2008:i:2:p:95-103
    DOI: 10.1243/1748006XJRR172
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR172
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, March.
    2. Levitin, Gregory, 2007. "Block diagram method for analyzing multi-state systems with uncovered failures," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 727-734.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    2. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Dai, Yuanshun, 2011. "Multi-state systems with selective propagated failures and imperfect individual and group protections," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1657-1666.
    3. Levitin, Gregory & Xing, Liudong, 2010. "Reliability and performance of multi-state systems with propagated failures having selective effect," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 655-661.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tazi, Nacef & Châtelet, Eric & Bouzidi, Youcef, 2018. "How combined performance and propagation of failure dependencies affect the reliability of a MSS," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 531-541.
    2. Jinlei Qin & Zheng Li, 2019. "Reliability and Sensitivity Analysis Method for a Multistate System with Common Cause Failure," Complexity, Hindawi, vol. 2019, pages 1-8, May.
    3. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Levitin, Gregory & Xing, Liudong, 2010. "Reliability and performance of multi-state systems with propagated failures having selective effect," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 655-661.
    5. Levitin, Gregory & Amari, Suprasad V., 2008. "Multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1730-1739.
    6. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    8. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    9. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    10. Nourelfath, Mustapha & Ait-Kadi, Daoud, 2007. "Optimization of series–parallel multi-state systems under maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1620-1626.
    11. Bigatti, A.M. & Pascual-Ortigosa, P. & Sáenz-de-Cabezón, E., 2021. "A C++ class for multi-state algebraic reliability computations," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Jia, Heping & Ding, Yi & Peng, Rui & Liu, Hanlin & Song, Yonghua, 2020. "Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    14. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    15. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Yeh, Wei-Chang, 2017. "Evaluation of the one-to-all-target-subsets reliability of a novel deterioration-effect acyclic multi-state information network," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 132-137.
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2013. "Cold-standby sequencing optimization considering mission cost," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 28-34.
    18. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    19. Zio, E. & Bazzo, R., 2011. "Level Diagrams analysis of Pareto Front for multiobjective system redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 569-580.
    20. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:222:y:2008:i:2:p:95-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.