IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226554.html
   My bibliography  Save this article

Risk factors in the illness-death model: Simulation study and the partial differential equation about incidence and prevalence

Author

Listed:
  • Annika Hoyer
  • Sophie Kaufmann
  • Ralph Brinks

Abstract

Recently, we developed a partial differential equation (PDE) that relates the age-specific prevalence of a chronic disease with the age-specific incidence and mortality rates in the illness-death model (IDM). With a view to planning population-wide interventions, the question arises how prevalence can be calculated if the distribution of a risk-factor in the population shifts. To study the impact of such possible interventions, it is important to deal with the resulting changes of risk-factors that affect the rates in the IDM. The aim of this work is to show how the PDE can be used to study such effects on the age-specific prevalence of a chronic disease, to demonstrate its applicability and to compare the results to a discrete event simulation (DES), a frequently used simulation technique. This is done for the first time based on the PDE which only needs data on population-wide epidemiological indices and is related to the von Foerster equation. In a simulation study, we analyse the effect of a hypothetical intervention against type 2 diabetes. We compare the age-specific prevalence obtained from a DES with the results predicted from modifying the rates in the PDE. The DES is based on 10000 subjects and estimates the effect of changes in the distributions of risk-factors. With respect to the PDE, the change of the distribution of risk factors is synthesized to an effective rate that can be used directly in the PDE. Both methods, DES and effective rate method (ERM) are capable of predicting the impact of the hypothetical intervention. The age-specific prevalences resulting from the DES and the ERM are consistent. Although DES is common in simulating effects of hypothetical interventions, the ERM is a suitable alternative. ERM fits well into the analytical theory of the IDM and the related PDE and comes with less computational effort.

Suggested Citation

  • Annika Hoyer & Sophie Kaufmann & Ralph Brinks, 2019. "Risk factors in the illness-death model: Simulation study and the partial differential equation about incidence and prevalence," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-10, December.
  • Handle: RePEc:plo:pone00:0226554
    DOI: 10.1371/journal.pone.0226554
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226554
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226554&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ralph Brinks & Sandra Landwehr & Rebecca Fischer-Betz & Matthias Schneider & Guido Giani, 2014. "Lexis Diagram and Illness-Death Model: Simulating Populations in Chronic Disease Epidemiology," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-8, September.
    2. Alan Brennan & Stephen E. Chick & Ruth Davies, 2006. "A taxonomy of model structures for economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1295-1310, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heß, Michael (Ed.) & Schlieter, Hannes (Ed.), 2014. "Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung 2014," ICB Research Reports 57, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
    2. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    3. Bernhard Ultsch & Oliver Damm & Philippe Beutels & Joke Bilcke & Bernd Brüggenjürgen & Andreas Gerber-Grote & Wolfgang Greiner & Germaine Hanquet & Raymond Hutubessy & Mark Jit & Mirjam Knol & Rüdiger, 2016. "Methods for Health Economic Evaluation of Vaccines and Immunization Decision Frameworks: A Consensus Framework from a European Vaccine Economics Community," PharmacoEconomics, Springer, vol. 34(3), pages 227-244, March.
    4. Hossein Haji Ali Afzali & Laura Bojke & Jonathan Karnon, 2018. "Model Structuring for Economic Evaluations of New Health Technologies," PharmacoEconomics, Springer, vol. 36(11), pages 1309-1319, November.
    5. Becky Pennington & Alex Filby & Lesley Owen & Matthew Taylor, 2018. "Smoking Cessation: A Comparison of Two Model Structures," PharmacoEconomics, Springer, vol. 36(9), pages 1101-1112, September.
    6. Gemma E. Shields & Mark Wilberforce & Paul Clarkson & Tracey Farragher & Arpana Verma & Linda M. Davies, 2022. "Factors Limiting Subgroup Analysis in Cost-Effectiveness Analysis and a Call for Transparency," PharmacoEconomics, Springer, vol. 40(2), pages 149-156, February.
    7. Fernando Alarid-Escudero & Richard F. MacLehose & Yadira Peralta & Karen M. Kuntz & Eva A. Enns, 2018. "Nonidentifiability in Model Calibration and Implications for Medical Decision Making," Medical Decision Making, , vol. 38(7), pages 810-821, October.
    8. Koen Degeling & Maarten J. IJzerman & Mariel S. Lavieri & Mark Strong & Hendrik Koffijberg, 2020. "Introduction to Metamodeling for Reducing Computational Burden of Advanced Analyses with Health Economic Models: A Structured Overview of Metamodeling Methods in a 6-Step Application Process," Medical Decision Making, , vol. 40(3), pages 348-363, April.
    9. Peter J. Dodd & Jeff J. Pennington & Liza Bronner Murrison & David W. Dowdy, 2018. "Simple Inclusion of Complex Diagnostic Algorithms in Infectious Disease Models for Economic Evaluation," Medical Decision Making, , vol. 38(8), pages 930-941, November.
    10. Jonathan Karnon & James Stahl & Alan Brennan & J. Jaime Caro & Javier Mar & Jörgen Möller, 2012. "Modeling Using Discrete Event Simulation," Medical Decision Making, , vol. 32(5), pages 701-711, September.
    11. Olivier Ethgen & Baudouin Standaert, 2012. "Population–versus Cohort–Based Modelling Approaches," PharmacoEconomics, Springer, vol. 30(3), pages 171-181, March.
    12. Stuart J. Wright & William G. Newman & Katherine Payne, 2019. "Accounting for Capacity Constraints in Economic Evaluations of Precision Medicine: A Systematic Review," PharmacoEconomics, Springer, vol. 37(8), pages 1011-1027, August.
    13. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    14. Mehdi Javanbakht & Jesse Fishman & Eoin Moloney & Peter Rydqvist & Amir Ansaripour, 2023. "Early Cost-Effectiveness and Price Threshold Analyses of Resmetirom: An Investigational Treatment for Management of Nonalcoholic Steatohepatitis," PharmacoEconomics - Open, Springer, vol. 7(1), pages 93-110, January.
    15. Eren Demir & David Southern, 2017. "Enabling better management of patients: discrete event simulation combined with the STAR approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 577-590, May.
    16. Mohsen Ghaffari Darab & Lidia Engel & Dennis Henzler & Michael Lauerer & Eckhard Nagel & Vicki Brown & Cathrine Mihalopoulos, 2024. "Model-Based Economic Evaluations of Interventions for Dementia: An Updated Systematic Review and Quality Assessment," Applied Health Economics and Health Policy, Springer, vol. 22(4), pages 503-525, July.
    17. Jen Kruger & Daniel Pollard & Hasan Basarir & Praveen Thokala & Debbie Cooke & Marie Clark & Rod Bond & Simon Heller & Alan Brennan, 2015. "Incorporating Psychological Predictors of Treatment Response into Health Economic Simulation Models," Medical Decision Making, , vol. 35(7), pages 872-887, October.
    18. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    19. Eline M. Krijkamp & Fernando Alarid-Escudero & Eva A. Enns & Hawre J. Jalal & M. G. Myriam Hunink & Petros Pechlivanoglou, 2018. "Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial," Medical Decision Making, , vol. 38(3), pages 400-422, April.
    20. Sarah Bates & Thomas Bayley & Paul Norman & Penny Breeze & Alan Brennan, 2020. "A Systematic Review of Methods to Predict Weight Trajectories in Health Economic Models of Behavioral Weight-Management Programs: The Potential Role of Psychosocial Factors," Medical Decision Making, , vol. 40(1), pages 90-105, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.