IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v33y2013i6p755-766.html
   My bibliography  Save this article

An Efficient Method for Computing Single-Parameter Partial Expected Value of Perfect Information

Author

Listed:
  • Mark Strong
  • Jeremy E. Oakley

Abstract

The value of learning an uncertain input in a decision model can be quantified by its partial expected value of perfect information (EVPI). This is commonly estimated via a 2-level nested Monte Carlo procedure in which the parameter of interest is sampled in an outer loop, and then conditional on this sampled value, the remaining parameters are sampled in an inner loop. This 2-level method can be difficult to implement if the joint distribution of the inner-loop parameters conditional on the parameter of interest is not easy to sample from. We present a simple alternative 1-level method for calculating partial EVPI for a single parameter that avoids the need to sample directly from the potentially problematic conditional distributions. We derive the sampling distribution of our estimator and show in a case study that it is both statistically and computationally more efficient than the 2-level method.

Suggested Citation

  • Mark Strong & Jeremy E. Oakley, 2013. "An Efficient Method for Computing Single-Parameter Partial Expected Value of Perfect Information," Medical Decision Making, , vol. 33(6), pages 755-766, August.
  • Handle: RePEc:sae:medema:v:33:y:2013:i:6:p:755-766
    DOI: 10.1177/0272989X12465123
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X12465123
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X12465123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karl Claxton & John Posnett, 1996. "An economic approach to clinical trial design and research priority‐setting," Health Economics, John Wiley & Sons, Ltd., vol. 5(6), pages 513-524, November.
    2. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Elmar Plischke & Emanuele Borgonovo, 2020. "Fighting the Curse of Sparsity: Probabilistic Sensitivity Measures From Cumulative Distribution Functions," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2639-2660, December.
    3. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    4. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    5. Gordon Hazen & Emanuele Borgonovo & Xuefei Lu, 2023. "Information Density in Decision Analysis," Decision Analysis, INFORMS, vol. 20(2), pages 89-108, June.
    6. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    7. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    8. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    9. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.
    2. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    3. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    4. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    5. Nicky J. Welton & Jason J. Madan & Deborah M. Caldwell & Tim J. Peters & Anthony E. Ades, 2014. "Expected Value of Sample Information for Multi-Arm Cluster Randomized Trials with Binary Outcomes," Medical Decision Making, , vol. 34(3), pages 352-365, April.
    6. Mark Strong & Jeremy E. Oakley & Alan Brennan & Penny Breeze, 2015. "Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 35(5), pages 570-583, July.
    7. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    8. Hawre Jalal & Jeremy D. Goldhaber-Fiebert & Karen M. Kuntz, 2015. "Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling," Medical Decision Making, , vol. 35(5), pages 584-595, July.
    9. Franck Maunoury & Anastasiia Motrunich & Maria Palka-Santini & Stéphanie F Bernatchez & Stéphane Ruckly & Jean-François Timsit, 2015. "Cost-Effectiveness Analysis of a Transparent Antimicrobial Dressing for Managing Central Venous and Arterial Catheters in Intensive Care Units," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    10. Sze Huey Tan & Keith R. Abrams & Sylwia Bujkiewicz, 2018. "Bayesian Multiparameter Evidence Synthesis to Inform Decision Making: A Case Study in Metastatic Hormone-Refractory Prostate Cancer," Medical Decision Making, , vol. 38(7), pages 834-848, October.
    11. Ana P. Johnson-Masotti & Purushottam W. Laud & Raymond G. Hoffmann & Matthew J. Hayat & Steven D. Pinkerton, 2004. "A Bayesian Approach to Net Health Benefits: An Illustration and Application to Modeling HIV Prevention," Medical Decision Making, , vol. 24(6), pages 634-653, November.
    12. Martin E. Backhouse, 1998. "An investment appraisal approach to clinical trial design," Health Economics, John Wiley & Sons, Ltd., vol. 7(7), pages 605-619, November.
    13. Michael Fairley & Lauren E. Cipriano & Jeremy D. Goldhaber-Fiebert, 2020. "Optimal Allocation of Research Funds under a Budget Constraint," Medical Decision Making, , vol. 40(6), pages 797-814, August.
    14. A C Bouman & A J ten Cate-Hoek & B L T Ramaekers & M A Joore, 2015. "Sample Size Estimation for Non-Inferiority Trials: Frequentist Approach versus Decision Theory Approach," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    15. Joanna Thorn & Joanna Coast & Lazaros Andronis, 2016. "Interpretation of the Expected Value of Perfect Information and Research Recommendations," Medical Decision Making, , vol. 36(3), pages 285-295, April.
    16. Hawre Jalal & Fernando Alarid-Escudero, 2018. "A Gaussian Approximation Approach for Value of Information Analysis," Medical Decision Making, , vol. 38(2), pages 174-188, February.
    17. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    18. Josh J. Carlson & Rahber Thariani & Josh Roth & Julie Gralow & N. Lynn Henry & Laura Esmail & Pat Deverka & Scott D. Ramsey & Laurence Baker & David L. Veenstra, 2013. "Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics," Medical Decision Making, , vol. 33(4), pages 463-471, May.
    19. Jeff Miller & Rolf Ulrich, 2019. "The quest for an optimal alpha," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-13, January.
    20. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:33:y:2013:i:6:p:755-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.