IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v28y2008i3p287-299.html
   My bibliography  Save this article

The Half-Life of Truth: What Are Appropriate Time Horizons for Research Decisions?

Author

Listed:
  • Zoe Philips

    (Centre for Health Economics, University of York, UK, che-teehta@york.ac.uk)

  • Karl Claxton

    (Centre for Health Economics, University of York, UK)

  • Stephen Palmer

    (Centre for Health Economics, University of York, UK)

Abstract

Purpose. To evaluate alternative approaches taken to estimate the population that could benefit from research and to demonstrate that explicitly modeling future change leads to more appropriate estimates of the expected value of information (EVI). Methods. Existing approaches to estimating the population typically focus on the time horizon for decisions, employing seemingly arbitrary estimates of the appropriate horizon. These approaches implicitly use the time horizon as a proxy for future changes in technologies, prices, and information. Different approaches to quantifying the time horizon are explored, in the context of a stylized model, to demonstrate the impact of uncertainty in this estimate on EVI. An alternative approach is developed that explicitly models future changes in technologies, prices, and information and that demonstrates the impact on EVI estimates. Results. Explicitly modeling future changes means that the EVI for the decision problem may increase or decrease over time, but the EVI for the group of parameters that can be evaluated by current research tends to decline. The finite and infinite time horizons for the decision problem represent special cases (e.g., price shock or no changes, respectively). This type of analysis can be used to inform policy decisions relating to the timing of research. Conclusions. The value of information depends on future changes in technologies, prices, and evidence. Finite time horizons for decision problems can be seen as a proxy for the complex and uncertain process of future change. A more explicit approach to modeling these changes could provide a more appropriate basis for calculating EVI, but this raises a number of significant methodological and technical challenges.

Suggested Citation

  • Zoe Philips & Karl Claxton & Stephen Palmer, 2008. "The Half-Life of Truth: What Are Appropriate Time Horizons for Research Decisions?," Medical Decision Making, , vol. 28(3), pages 287-299, May.
  • Handle: RePEc:sae:medema:v:28:y:2008:i:3:p:287-299
    DOI: 10.1177/0272989X07312724
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X07312724
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X07312724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    2. Brennan, Alan & Kharroubi, Samer A., 2007. "Efficient computation of partial expected value of sample information using Bayesian approximation," Journal of Health Economics, Elsevier, vol. 26(1), pages 122-148, January.
    3. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
    4. Karl Claxton & Simon Eggington & Laura Ginnelly & Susan Griffin & Christopher McCabe & Zoe Philips & Paul Tappenden & Alan Wailoo, 2005. "A Pilot Study of Value of Information Analysis to Support Research Recommendations for the National Institute for Health and Clinical Excellence," Working Papers 004cherp, Centre for Health Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Ethgen & Baudouin Standaert, 2012. "Population–versus Cohort–Based Modelling Approaches," PharmacoEconomics, Springer, vol. 30(3), pages 171-181, March.
    2. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    3. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    4. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    5. Laura McCullagh & Cathal Walsh & Michael Barry, 2012. "Value-of-Information Analysis to Reduce Decision Uncertainty Associated with the Choice of Thromboprophylaxis after Total Hip Replacement in the Irish Healthcare Setting," PharmacoEconomics, Springer, vol. 30(10), pages 941-959, October.
    6. Susan C. Griffin & Karl P. Claxton & Stephen J. Palmer & Mark J. Sculpher, 2011. "Dangerous omissions: the consequences of ignoring decision uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 20(2), pages 212-224, February.
    7. Karl Claxton & Stephen Palmer & Louise Longworth & Laura Bojke & Susan Griffin & Claire McKenna & Marta Soares & Eldon Spackman & Jihee Youn, 2011. "Uncertainty, evidence and irrecoverable costs: Informing approval, pricing and research decisions for health technologies," Working Papers 069cherp, Centre for Health Economics, University of York.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    2. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    3. WH Rogowski, 2013. "An Economic Theory Of The Fourth Hurdle," Health Economics, John Wiley & Sons, Ltd., vol. 22(5), pages 600-610, May.
    4. Gordon Hazen, 2011. "Cohort Decomposition for Markov Cost-Effectiveness Models," Medical Decision Making, , vol. 31(1), pages 19-34, January.
    5. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    6. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    7. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    8. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    9. Josh J. Carlson & Rahber Thariani & Josh Roth & Julie Gralow & N. Lynn Henry & Laura Esmail & Pat Deverka & Scott D. Ramsey & Laurence Baker & David L. Veenstra, 2013. "Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics," Medical Decision Making, , vol. 33(4), pages 463-471, May.
    10. Kasper M. Johannesen & Karl Claxton & Mark J. Sculpher & Allan J. Wailoo, 2018. "How to design the cost‐effectiveness appraisal process of new healthcare technologies to maximise population health: A conceptual framework," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 41-54, February.
    11. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.
    12. Penny Breeze & Alan Brennan, 2015. "Valuing Trial Designs from a Pharmaceutical Perspective Using Value‐Based Pricing," Health Economics, John Wiley & Sons, Ltd., vol. 24(11), pages 1468-1482, November.
    13. Andrea Gabrio & Michael J. Daniels & Gianluca Baio, 2020. "A Bayesian parametric approach to handle missing longitudinal outcome data in trial‐based health economic evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 607-629, February.
    14. Anna Heath, 2022. "Calculating Expected Value of Sample Information Adjusting for Imperfect Implementation," Medical Decision Making, , vol. 42(5), pages 626-636, July.
    15. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
    16. Felipa, de Mello-Sampayo, 2014. "The Timing and Probability of Switching to Second-line Regimen - An application to Second-Line Antiretroviral Therapy in India," MPRA Paper 60997, University Library of Munich, Germany.
    17. Stefano Conti & Karl Claxton, 2009. "Dimensions of Design Space: A Decision-Theoretic Approach to Optimal Research Design," Medical Decision Making, , vol. 29(6), pages 643-660, November.
    18. Susan Griffin & Nicky J. Welton & Karl Claxton, 2010. "Exploring the Research Decision Space: The Expected Value of Information for Sequential Research Designs," Medical Decision Making, , vol. 30(2), pages 155-162, March.
    19. Felipa de Mello-Sampayo, 2022. "On the timing and probability of Presurgical Teledermatology: how it becomes the dominant strategy," Health Care Management Science, Springer, vol. 25(3), pages 389-405, September.
    20. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2018. "Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching," Medical Decision Making, , vol. 38(2), pages 163-173, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:28:y:2008:i:3:p:287-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.