IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v20y2000i2p160-169.html
   My bibliography  Save this article

A Comparison of Human and Machine-based Predictions of Successful Weaning from Mechanical Ventilation

Author

Listed:
  • Allan Gottschalk
  • M. Chris Hyzer
  • Ralph T. Geer

Abstract

Purpose. To evaluate the ability of an appropriately trained neural network to correctly interpret a set of weaning parameters to predict the liberation of a patient from mechanical ventilation, and to contrast these predictions with those of human experts restricted to the same limited set of physiologic data. Methods. For each set of weaning parameters, a prediction was made by multiple realizations of a neural network and six expert volunteers. Results. The percentage of correct predictions made by the neural network when the decision threshold was set to 0.5 (range 0-1) was 83.3 ± 4.2 (mean ± SD) and that for the experts was 83.3 ± 4.7. Predictions by the network when the threshold was 0.5 had a sensitivity of 0.83 and a specificity of 0.84, compared with 0.90 and 0.77, respectively, for the experts. However, sensitivity and specificity comparable to those of the human experts could be obtained by adjusting the decision threshold of the network predictor so that only the most clearly ventilator-dependent patients would not be given a trial of extubation. Conclusion. When both are restricted to the same limited set of patient data, appropriately trained neural networks can be as effective as human experts in predicting whether weaning from mechanical ventilation will be successful. Key words: mechanical ventilation; weaning; neural networks; decision analysis; respiratory failure. (Med Decis Making 2000;20:160-169)

Suggested Citation

  • Allan Gottschalk & M. Chris Hyzer & Ralph T. Geer, 2000. "A Comparison of Human and Machine-based Predictions of Successful Weaning from Mechanical Ventilation," Medical Decision Making, , vol. 20(2), pages 160-169, April.
  • Handle: RePEc:sae:medema:v:20:y:2000:i:2:p:160-169
    DOI: 10.1177/0272989X0002000202
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X0002000202
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X0002000202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul S. Heckerling & Ben S. Gerber & Thomas G. Tape & Robert S. Wigton, 2003. "Prediction of Community-Acquired Pneumonia Using Artificial Neural Networks," Medical Decision Making, , vol. 23(2), pages 112-121, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:20:y:2000:i:2:p:160-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.