IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v15y1995i4p318-332.html
   My bibliography  Save this article

Continuous Trees and NEVADA Simulation

Author

Listed:
  • David J. Bryg

Abstract

This paper introduces an improved technique for modeling risk and decision problems that have continuous random variables and probabilistic dependence. Variables are modeled with mixtures of four-parameter random variables, called "continuous trees." Functions of random variables are calculated using gaussian quadrature in a manner called "NEVADA simulation" ( N um E rical integration of V ariance A nd probabilistic D ependence A nalyzer). This technique is compared with traditional decision-tree modeling in terms of analytic technique, solution-time complexity, and accuracy. NEVADA simulation takes advantage of the proba bilistic independence in a decision problem while allowing for probabilistic dependence to achieve polynomial computational-time complexity for many decision problems. It improves on the accuracy of traditional decision trees by employing larger approximations than tra ditional decision analysis. It improves on traditional decision analysis by modeling continuous variables with continuous, rather than discrete, distributions. A Bayesian analysis using a mixed discrete-continuous probability distribution for cigarette smoking rate is presented. Key words : continuous trees; NEVADA simulation; decision analysis; modeling. (Med Decis Making 1995;15:318-332)

Suggested Citation

  • David J. Bryg, 1995. "Continuous Trees and NEVADA Simulation," Medical Decision Making, , vol. 15(4), pages 318-332, October.
  • Handle: RePEc:sae:medema:v:15:y:1995:i:4:p:318-332
    DOI: 10.1177/0272989X9501500403
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X9501500403
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X9501500403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ross D. Shachter & C. Robert Kenley, 1989. "Gaussian Influence Diagrams," Management Science, INFORMS, vol. 35(5), pages 527-550, May.
    2. Benjamin Djulbegovic, 1993. "An Estimation of Life Expectancy: The Method Is a Message," Medical Decision Making, , vol. 13(3), pages 245-246, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    2. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    3. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    4. repec:jss:jstsof:35:i07 is not listed on IDEAS
    5. Barry R. Cobb, 2007. "Influence Diagrams with Continuous Decision Variables and Non-Gaussian Uncertainties," Decision Analysis, INFORMS, vol. 4(3), pages 136-155, September.
    6. Concha Bielza & Peter Müller & David Ríos Insua, 1999. "Decision Analysis by Augmented Probability Simulation," Management Science, INFORMS, vol. 45(7), pages 995-1007, July.
    7. Castillo, Enrique & Gutiérrez, José Manuel & Hadi, Ali S., 1998. "Modeling Probabilistic Networks of Discrete and Continuous Variables," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 48-65, January.
    8. Hanea, A.M. & Kurowicka, D. & Cooke, R.M. & Ababei, D.A., 2010. "Mining and visualising ordinal data with non-parametric continuous BBNs," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 668-687, March.
    9. Andersson, Steen A. & Perlman, Michael D., 1998. "Normal Linear Regression Models With Recursive Graphical Markov Structure," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 133-187, August.
    10. Hanea, Anca & Morales Napoles, Oswaldo & Ababei, Dan, 2015. "Non-parametric Bayesian networks: Improving theory and reviewing applications," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 265-284.
    11. Finn Jensen & Thomas Nielsen, 2013. "Probabilistic decision graphs for optimization under uncertainty," Annals of Operations Research, Springer, vol. 204(1), pages 223-248, April.
    12. Zohar, Ron & Geiger, Dan, 2007. "Estimation of flows in flow networks," European Journal of Operational Research, Elsevier, vol. 176(2), pages 691-706, January.
    13. Gómez-Villegas, Miguel A. & Maín, Paloma & Susi, Rosario, 2008. "Extreme inaccuracies in Gaussian Bayesian networks," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1929-1940, October.
    14. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    15. Abdul Salam & Marco Grzegorczyk, 2023. "Model averaging for sparse seemingly unrelated regression using Bayesian networks among the errors," Computational Statistics, Springer, vol. 38(2), pages 779-808, June.
    16. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    17. Christopher Raphael, 2003. "Bayesian Networks with Degenerate Gaussian Distributions," Methodology and Computing in Applied Probability, Springer, vol. 5(2), pages 235-263, June.
    18. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    19. Agogino, Alice & Chao, Susan & Goebel, Kai & Alag, Satnam & Cammon, Bradly & Wang, Jiangxin, 1998. "Intelligent Diagnosis Based On Validated And Fused Data For Relilability And Safety Enhancement Of Automated Vehicles In An IVHS," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1mw2v298, Institute of Transportation Studies, UC Berkeley.
    20. Cobb, Barry R. & Shenoy, Prakash P., 2008. "Decision making with hybrid influence diagrams using mixtures of truncated exponentials," European Journal of Operational Research, Elsevier, vol. 186(1), pages 261-275, April.
    21. Gómez-Villegas, M.A. & Main, P. & Navarro, H. & Susi, R., 2014. "Sensitivity to hyperprior parameters in Gaussian Bayesian networks," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 214-225.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:15:y:1995:i:4:p:318-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.