IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i9p1929-1940.html
   My bibliography  Save this article

Extreme inaccuracies in Gaussian Bayesian networks

Author

Listed:
  • Gómez-Villegas, Miguel A.
  • Maín, Paloma
  • Susi, Rosario

Abstract

To evaluate the impact of model inaccuracies over the network's output, after the evidence propagation, in a Gaussian Bayesian network, a sensitivity measure is introduced. This sensitivity measure is the Kullback-Leibler divergence and yields different expressions depending on the type of parameter to be perturbed, i.e. on the inaccurate parameter. In this work, the behavior of this sensitivity measure is studied when model inaccuracies are extreme, i.e. when extreme perturbations of the parameters can exist. Moreover, the sensitivity measure is evaluated for extreme situations of dependence between the main variables of the network and its behavior with extreme inaccuracies. This analysis is performed to find the effect of extreme uncertainty about the initial parameters of the model in a Gaussian Bayesian network and about extreme values of evidence. These ideas and procedures are illustrated with an example.

Suggested Citation

  • Gómez-Villegas, Miguel A. & Maín, Paloma & Susi, Rosario, 2008. "Extreme inaccuracies in Gaussian Bayesian networks," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1929-1940, October.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:1929-1940
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00038-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ross D. Shachter & C. Robert Kenley, 1989. "Gaussian Influence Diagrams," Management Science, INFORMS, vol. 35(5), pages 527-550, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez-Villegas, M.A. & Main, P. & Navarro, H. & Susi, R., 2014. "Sensitivity to hyperprior parameters in Gaussian Bayesian networks," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 214-225.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    2. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    3. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    4. repec:jss:jstsof:35:i07 is not listed on IDEAS
    5. Barry R. Cobb, 2007. "Influence Diagrams with Continuous Decision Variables and Non-Gaussian Uncertainties," Decision Analysis, INFORMS, vol. 4(3), pages 136-155, September.
    6. Concha Bielza & Peter Müller & David Ríos Insua, 1999. "Decision Analysis by Augmented Probability Simulation," Management Science, INFORMS, vol. 45(7), pages 995-1007, July.
    7. Castillo, Enrique & Gutiérrez, José Manuel & Hadi, Ali S., 1998. "Modeling Probabilistic Networks of Discrete and Continuous Variables," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 48-65, January.
    8. Hanea, A.M. & Kurowicka, D. & Cooke, R.M. & Ababei, D.A., 2010. "Mining and visualising ordinal data with non-parametric continuous BBNs," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 668-687, March.
    9. Andersson, Steen A. & Perlman, Michael D., 1998. "Normal Linear Regression Models With Recursive Graphical Markov Structure," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 133-187, August.
    10. Hanea, Anca & Morales Napoles, Oswaldo & Ababei, Dan, 2015. "Non-parametric Bayesian networks: Improving theory and reviewing applications," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 265-284.
    11. David J. Bryg, 1995. "Continuous Trees and NEVADA Simulation," Medical Decision Making, , vol. 15(4), pages 318-332, October.
    12. Finn Jensen & Thomas Nielsen, 2013. "Probabilistic decision graphs for optimization under uncertainty," Annals of Operations Research, Springer, vol. 204(1), pages 223-248, April.
    13. Zohar, Ron & Geiger, Dan, 2007. "Estimation of flows in flow networks," European Journal of Operational Research, Elsevier, vol. 176(2), pages 691-706, January.
    14. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    15. Abdul Salam & Marco Grzegorczyk, 2023. "Model averaging for sparse seemingly unrelated regression using Bayesian networks among the errors," Computational Statistics, Springer, vol. 38(2), pages 779-808, June.
    16. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    17. Christopher Raphael, 2003. "Bayesian Networks with Degenerate Gaussian Distributions," Methodology and Computing in Applied Probability, Springer, vol. 5(2), pages 235-263, June.
    18. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    19. Agogino, Alice & Chao, Susan & Goebel, Kai & Alag, Satnam & Cammon, Bradly & Wang, Jiangxin, 1998. "Intelligent Diagnosis Based On Validated And Fused Data For Relilability And Safety Enhancement Of Automated Vehicles In An IVHS," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1mw2v298, Institute of Transportation Studies, UC Berkeley.
    20. Cobb, Barry R. & Shenoy, Prakash P., 2008. "Decision making with hybrid influence diagrams using mixtures of truncated exponentials," European Journal of Operational Research, Elsevier, vol. 186(1), pages 261-275, April.
    21. Gómez-Villegas, M.A. & Main, P. & Navarro, H. & Susi, R., 2014. "Sensitivity to hyperprior parameters in Gaussian Bayesian networks," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 214-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:9:p:1929-1940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.