IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v40y2015i6p547-578.html
   My bibliography  Save this article

IRT Item Parameter Recovery With Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models

Author

Listed:
  • Jodi M. Casabianca

    (The University of Texas at Austin)

  • Charles Lewis

    (Fordham University)

Abstract

Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation with LLS embedded and compares LLS to other latent trait distribution specifications, a fixed normal distribution, and the empirical histogram solution, in terms of IRT item parameter recovery. Simulation study results using a 3-parameter logistic model reveal that LLS models matching four or five moments are optimal in most cases. Examples with empirical data compare LLS to these approaches as well as Ramsay-curve IRT.

Suggested Citation

  • Jodi M. Casabianca & Charles Lewis, 2015. "IRT Item Parameter Recovery With Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models," Journal of Educational and Behavioral Statistics, , vol. 40(6), pages 547-578, December.
  • Handle: RePEc:sae:jedbes:v:40:y:2015:i:6:p:547-578
    DOI: 10.3102/1076998615606112
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998615606112
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998615606112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven Rigdon & Robert Tsutakawa, 1983. "Parameter estimation in latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 48(4), pages 567-574, December.
    2. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    3. Robert Tsutakawa & Jane Johnson, 1990. "The effect of uncertainty of item parameter estimation on ability estimates," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 371-390, June.
    4. Noel Cressie & Paul Holland, 1983. "Characterizing the manifest probabilities of latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 48(1), pages 129-141, March.
    5. Erling Andersen & Mette Madsen, 1977. "Estimating the parameters of the latent population distribution," Psychometrika, Springer;The Psychometric Society, vol. 42(3), pages 357-374, September.
    6. Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
    7. Robert Mislevy, 1984. "Estimating latent distributions," Psychometrika, Springer;The Psychometric Society, vol. 49(3), pages 359-381, September.
    8. Jinming Zhang & Minge Xie & Xiaolan Song & Ting Lu, 2011. "Investigating the Impact of Uncertainty About Item Parameters on Ability Estimation," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 97-118, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Mislevy, 1991. "Randomization-based inference about latent variables from complex samples," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 177-196, June.
    2. Dean Follmann, 1988. "Consistent estimation in the rasch model based on nonparametric margins," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 553-562, December.
    3. Giada Spaccapanico Proietti & Mariagiulia Matteucci & Stefania Mignani & Bernard P. Veldkamp, 2024. "Chance-Constrained Automated Test Assembly," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 92-120, February.
    4. Ogasawara, Haruhiko, 2013. "Asymptotic cumulants of ability estimators using fallible item parameters," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 144-162.
    5. Yang Liu & Ji Seung Yang, 2018. "Interval Estimation of Latent Variable Scores in Item Response Theory," Journal of Educational and Behavioral Statistics, , vol. 43(3), pages 259-285, June.
    6. Robert Mislevy, 1986. "Bayes modal estimation in item response models," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 177-195, June.
    7. Aeilko Zwinderman, 1991. "A generalized rasch model for manifest predictors," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 589-600, December.
    8. Jinming Zhang, 2012. "The Impact of Variability of Item Parameter Estimators on Test Information Function," Journal of Educational and Behavioral Statistics, , vol. 37(6), pages 737-757, December.
    9. Margo Jansen & Marijtje Duijn, 1992. "Extensions of Rasch's multiplicative poisson model," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 405-414, September.
    10. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    11. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    12. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    13. Fabienne Comte & Adeline Samson, 2012. "Nonparametric estimation of random-effects densities in linear mixed-effects model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 951-975, December.
    14. Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
    15. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    16. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    17. Cafarelli Ryan & Rigdon Christopher J. & Rigdon Steven E., 2012. "Models for Third Down Conversion in the National Football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-26, October.
    18. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    19. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    20. Lourdes Montenegro & Víctor Lachos & Heleno Bolfarine, 2010. "Inference for a skew extension of the Grubbs model," Statistical Papers, Springer, vol. 51(3), pages 701-715, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:40:y:2015:i:6:p:547-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.