IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v38y2013i1p81-101.html
   My bibliography  Save this article

The Analysis of Likert Scales Using State Multipoles

Author

Listed:
  • James Camparo

    (Department of Physics and Astronomy, Whittier College)

  • Lorinda B. Camparo

    (Department of Psychology, Whittier College)

Abstract

Though ubiquitous, Likert scaling’s traditional mode of analysis is often unable to uncover all of the valid information in a data set. Here, the authors discuss a solution to this problem based on methodology developed by quantum physicists: the state multipole method. The authors demonstrate the relative ease and value of this method by examining college students’ endorsement of one possible cause of prejudice: segregation. Though the mean level of students’ endorsement did not differ among ethnic groups, an examination of state multipoles showed that African Americans had a level of polarization in their endorsement that was not reflected by Hispanics or European Americans. This result could not have been obtained with the traditional approach and demonstrates the new method’s utility for social science research.

Suggested Citation

  • James Camparo & Lorinda B. Camparo, 2013. "The Analysis of Likert Scales Using State Multipoles," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 81-101, February.
  • Handle: RePEc:sae:jedbes:v:38:y:2013:i:1:p:81-101
    DOI: 10.3102/1076998611431084
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998611431084
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998611431084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bohning, Dankmar & Seidel, Wilfried, 2003. "Editorial: recent developments in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 349-357, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rufo, M.J. & Pérez, C.J. & Martín, J., 2009. "Local parametric sensitivity for mixture models of lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1238-1244.
    2. M. Rufo & J. Martín & C. Pérez, 2006. "Bayesian analysis of finite mixture models of distributions from exponential families," Computational Statistics, Springer, vol. 21(3), pages 621-637, December.
    3. Steve Su, 2016. "Flexible modelling of survival curves for censored data," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-20, December.
    4. Prates, Marcos Oliveira & Lachos, Victor Hugo & Barbosa Cabral, Celso Rômulo, 2013. "mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i12).
    5. Rufo, M.J. & Martín, J. & Pérez, C.J., 2010. "New approaches to compute Bayes factor in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3324-3335, December.
    6. Lu, Zhenqiu (Laura) & Zhang, Zhiyong, 2014. "Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 220-240.
    7. Garel, Bernard, 2007. "Recent asymptotic results in testing for mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5295-5304, July.
    8. Isaia, A. Durio E.D., 2007. "A quick procedure for model selection in the case of mixture of normal densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5635-5643, August.
    9. Montanari, Angela & Calo, Daniela G. & Viroli, Cinzia, 2008. "Independent factor discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3246-3254, February.
    10. Calo, Daniela G., 2007. "Gaussian mixture model classification: A projection pursuit approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 471-482, September.
    11. Liming Xiang & Kelvin K. W. Yau & Yer Van Hui & Andy H. Lee, 2008. "Minimum Hellinger Distance Estimation for k-Component Poisson Mixture with Random Effects," Biometrics, The International Biometric Society, vol. 64(2), pages 508-518, June.
    12. Rufo, M.J. & Perez, C.J. & Martin, J., 2007. "Bayesian analysis of finite mixtures of multinomial and negative-multinomial distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5452-5466, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:38:y:2013:i:1:p:81-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.