IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v34y2009i1p97-114.html
   My bibliography  Save this article

Consequences of Unmodeled Nonlinear Effects in Multilevel Models

Author

Listed:
  • Daniel J. Bauer
  • Li Cai

Abstract

Applications of multilevel models have increased markedly during the past decade. In incorporating lower-level predictors into multilevel models, a key interest is often whether or not a given predictor requires a random slope, that is, whether the effect of the predictor varies over upper-level units. If the variance of a random slope significantly differs from zero, the focus of the analysis may then shift to explaining this heterogeneity with upper-level predictors through the testing of cross-level interactions. As shown in this article, however, both the variance of the random slope and the cross-level interaction effects may be entirely spurious if the relationship between the lower-level predictor and the outcome is nonlinear in form but is not modeled as such. The importance of conducting diagnostics to detect nonlinear effects is discussed and demonstrated via an empirical example.

Suggested Citation

  • Daniel J. Bauer & Li Cai, 2009. "Consequences of Unmodeled Nonlinear Effects in Multilevel Models," Journal of Educational and Behavioral Statistics, , vol. 34(1), pages 97-114, March.
  • Handle: RePEc:sae:jedbes:v:34:y:2009:i:1:p:97-114
    DOI: 10.3102/1076998607310504
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998607310504
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998607310504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun-Joo Cho & Sarah Brown-Schmidt & Woo-yeol Lee, 2018. "Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 751-771, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:34:y:2009:i:1:p:97-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.