IDEAS home Printed from https://ideas.repec.org/a/sae/jadint/v24y2022i2p239-246.html
   My bibliography  Save this article

Cryogenic hydrogen Moderator infrastructure at ESS

Author

Listed:
  • Yannick Beßler
  • Ghaleb Natour

Abstract

The European Spallation Source (ESS) in Lund, Sweden, is designed to become the most powerful spallation neutron source in the world. As one subsystem of the Target Station, which was developed and built at Central Institute of Engineering, Electronics and Analytics – Engineering and Technology (ZEA-1) of Forschungszentrum Juelich, the cold Moderator slows down high-energy neutrons from the spallation process. To gain maximum neutron flux intensities along with high system availability for condensed and soft matter research, an optimized liquid hydrogen Moderator circuit has been developed. Hydrogen with a pressure around 1 MPa, a temperature around 20 K, and a para-hydrogen fraction of at least 0.995 will be utilized to interact with neutrons in a unique cold Moderator vessel arrangement. Hydrogen conversion from ortho- to para-hydrogen will be controlled using a catalyst. Two turbo pumps are arranged in series and circulate the cryogen. A helium refrigerator, the Target Moderator Cryoplant (TMCP), continuously recools the hydrogen mass flow. Pressure stabilization is achieved by a pressure control buffer. The individual ESS Cryogenic Moderator System (CMS) components, the first and second generation of hydrogen Moderators (BF1 and BF2) and a first draft of a deuterium Moderator upgrade are presented.

Suggested Citation

  • Yannick Beßler & Ghaleb Natour, 2022. "Cryogenic hydrogen Moderator infrastructure at ESS," Jadavpur Journal of International Relations, , vol. 24(2), pages 239-246, September.
  • Handle: RePEc:sae:jadint:v:24:y:2022:i:2:p:239-246
    DOI: 10.3233/JNR-220033
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3233/JNR-220033
    Download Restriction: no

    File URL: https://libkey.io/10.3233/JNR-220033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jadint:v:24:y:2022:i:2:p:239-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.