Author
Abstract
Reflectometry techniques are especially suited for time-of-flight measurements. The use of longer wavelengths does not modify the physics probed during a reflectivity measurement. Besides, reflectometry measurements are not affected by effects such as multiple scattering or absorption. The use of longer wavelengths would permit to achieve instrumental gains. Indeed, in the scattering plane, the phase space can be used more efficiently by a geometrical factor proportional to λ 2 provided by a simple increase of the incidence angles on the sample (for a given Q range). Perpendicular to the scattering plane, the neutron flux can be increased by a factor proportional to λ due to the increased critical angle of optics used for focusing in this direction. However, to comply with a given pulse structure of the neutron source would either require to proportionally decrease the instrument length or to drop neutron frames. Both options are viable depending on the scientific goals and we show that the flux penalties are actually minimal. However, owing to the fact that the performances of reflectometry instrumentation at ESS are expected to be extremely high, it is questionable if it is worth investing in Very Cold Neutrons (VCN) production for this specific technique the more so as the implementation will not be optimal for extrinsic reasons. On the other hand, implementing VCN on sources such as CANS where the flux is intrinsically limited may be worth the investment since (i) such sources could probably be designed to use VCN in an optimal way, (ii) the construction and handling of VCN sources would be much easier as radiative heating would be reduced by several orders of magnitude, in the range of hundreds of watts.
Suggested Citation
Frédéric Ott, 2022.
"Opportunities in the use of Very Cold Neutrons in reflectometry techniques,"
Jadavpur Journal of International Relations, , vol. 24(2), pages 211-221, September.
Handle:
RePEc:sae:jadint:v:24:y:2022:i:2:p:211-221
DOI: 10.3233/JNR-220004
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jadint:v:24:y:2022:i:2:p:211-221. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.