IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i2p1550147719833629.html
   My bibliography  Save this article

Individual cylinder air–fuel ratio estimation and control for a large-bore gas fuel engine

Author

Listed:
  • Tianbo Wang
  • Siqin Chang
  • Liang Liu
  • Jianhui Zhu
  • Yaxuan Xu

Abstract

For internal combustion engines with multi-cylinders, the differences of fuel injection, air distribution, and even exhaust gas recirculation between cylinders may result in cylinder-to-cylinder imbalance, and then the exhaust emission and engine performance will be poor. The individual cylinder air–fuel ratio control is one of the important techniques used to improve fuel economy and reduce exhaust emission. For the large-bore gas fuel engine with gas fuel injection devices, their mass flow rates would be affected more seriously by the valve lifts than the injector of gasoline engine. In this study, we propose an individual cylinder air–fuel ratio estimation algorithm, based on Kalman filtering, for a gas fuel engine with asymmetrical exhaust runners. The coefficient matrix update step is added to the iterative process of common Kalman observer. The individual cylinder air–fuel ratios are estimated with one single universal exhaust gas oxygen sensor located on each side exhaust manifold. Furthermore, the estimation and feedback control performances with the proposed estimation algorithm are validated with a one-dimensional engine simulation tool. The results indicate that the modified Kalman observer can estimate the individual cylinder air–fuel ratio of gas fuel engine with asymmetrical exhaust runner precisely, with the maximum error smaller than 1% under steady-state conditions, and compensate the gas fuel injection devices for their mass flow rate differences.

Suggested Citation

  • Tianbo Wang & Siqin Chang & Liang Liu & Jianhui Zhu & Yaxuan Xu, 2019. "Individual cylinder air–fuel ratio estimation and control for a large-bore gas fuel engine," International Journal of Distributed Sensor Networks, , vol. 15(2), pages 15501477198, February.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:2:p:1550147719833629
    DOI: 10.1177/1550147719833629
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719833629
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719833629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Madan & Shen, Tielong, 2017. "In-cylinder pressure-based air-fuel ratio control for lean burn operation mode of SI engines," Energy, Elsevier, vol. 120(C), pages 106-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Madan & Tsujimura, Taku & Suzuki, Yasumasa, 2018. "NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine," Energy, Elsevier, vol. 145(C), pages 496-506.
    2. Denghao Zhu & Jun Deng & Jinqiu Wang & Shuo Wang & Hongyu Zhang & Jakob Andert & Liguang Li, 2020. "Development and Application of Ion Current/Cylinder Pressure Cooperative Combustion Diagnosis and Control System," Energies, MDPI, vol. 13(21), pages 1-21, October.
    3. Liu, Zuowen & Zheng, Zhaolei, 2024. "The effect of ignition energy on the lean combustion limitation in high compression ratio engines," Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:2:p:1550147719833629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.