IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp106-116.html
   My bibliography  Save this article

In-cylinder pressure-based air-fuel ratio control for lean burn operation mode of SI engines

Author

Listed:
  • Kumar, Madan
  • Shen, Tielong

Abstract

In this paper, an in-cylinder air-fuel ratio control problem for lean burn mode operation of spark ignition engine is investigated with cycle-based model considering the cycle-to-cycle coupling effects of residual gas compositions. The statistical properties of parameter variation of the cyclic transient model are calibrated based on experiments of lean burn operating modes. With the calibrated model, a model-based predictive control strategy is proposed to improve the preciseness of in-cylinder air-fuel ratio at lean-burn operation including transient operation. To analyze the combustion parameters and its stability, the cycle-based indicators, such as heat transfer, indicated mean effective pressure (IMEP), combustion efficiency, residual gas fraction, peak pressure, crank angle at 50 % heat release (CA50) and NOx emission are adopted. The consecutive cycle co-relation is also addressed to analyze the stochastic behavior at lean combustion. Finally, experimental validation are performed and demonstrated on a full-scaled gasoline engine test bench to show the effectiveness of proposed lean-mode control scheme and combustion stabilities.

Suggested Citation

  • Kumar, Madan & Shen, Tielong, 2017. "In-cylinder pressure-based air-fuel ratio control for lean burn operation mode of SI engines," Energy, Elsevier, vol. 120(C), pages 106-116.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:106-116
    DOI: 10.1016/j.energy.2016.12.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denghao Zhu & Jun Deng & Jinqiu Wang & Shuo Wang & Hongyu Zhang & Jakob Andert & Liguang Li, 2020. "Development and Application of Ion Current/Cylinder Pressure Cooperative Combustion Diagnosis and Control System," Energies, MDPI, vol. 13(21), pages 1-21, October.
    2. Liu, Zuowen & Zheng, Zhaolei, 2024. "The effect of ignition energy on the lean combustion limitation in high compression ratio engines," Energy, Elsevier, vol. 301(C).
    3. Kumar, Madan & Tsujimura, Taku & Suzuki, Yasumasa, 2018. "NOx model development and validation with diesel and hydrogen/diesel dual-fuel system on diesel engine," Energy, Elsevier, vol. 145(C), pages 496-506.
    4. Tianbo Wang & Siqin Chang & Liang Liu & Jianhui Zhu & Yaxuan Xu, 2019. "Individual cylinder air–fuel ratio estimation and control for a large-bore gas fuel engine," International Journal of Distributed Sensor Networks, , vol. 15(2), pages 15501477198, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:106-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.