IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i12p1550147719892203.html
   My bibliography  Save this article

Exploiting cooperative sensing for accurate target tracking in industrial Internet of things

Author

Listed:
  • Muneeb A Khan
  • Muazzam A Khan
  • Anis U Rahman
  • Asad Waqar Malik
  • Safdar A Khan

Abstract

Wireless sensor networks are a cornerstone of the Internet of things with many applications. An important aspect of such applications is target tracking using self-positioned known sensor nodes. Over the years, many schemes have been proposed to locate and track the target path. However, accuracy and reliable tracking remain an open area of research. In this article, we propose a dynamic cooperative multilateral sensing scheme for indoor industrial environments to improve target localization and tracking accuracy. The scheme is designed to select reliable nodes based on the distance between nodes within-cluster and to the target for reduced positioning error. Furthermore, a cluster node is dynamically selected based on distance from the base station. We simulate the proposed technique in scenarios with tracking at regular intervals and with the complete path. Furthermore, the performance of the scheme is also tested under different sensor coverage areas. The results show that the proposed scheme provides better target tracking with up to 19% higher accuracy in comparison to the traditional trilateration scheme.

Suggested Citation

  • Muneeb A Khan & Muazzam A Khan & Anis U Rahman & Asad Waqar Malik & Safdar A Khan, 2019. "Exploiting cooperative sensing for accurate target tracking in industrial Internet of things," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:12:p:1550147719892203
    DOI: 10.1177/1550147719892203
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719892203
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719892203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei, Bo & Deng, Yong, 2019. "A cluster-growing dimension of complex networks: From the view of node closeness centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 80-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hui & Chen, LuYuan & Yao, JingTao & Wang, XingNan, 2019. "A three-way clustering method based on an improved DBSCAN algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Dong, Chen & Xu, Guiqiong & Meng, Lei & Yang, Pingle, 2022. "CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Pavón-Domínguez, Pablo & Moreno-Pulido, Soledad, 2022. "Sandbox fixed-mass algorithm for multifractal unweighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Fu, Xin & Qiang, Yongjie & Liu, Xuxu & Jiang, Ying & Cui, Zhiwei & Zhang, Deyu & Wang, Jianwei, 2022. "Will multi-industry supply chains' resilience under the impact of COVID-19 pandemic be different? A perspective from China's highway freight transport," Transport Policy, Elsevier, vol. 118(C), pages 165-178.
    5. Wen, Tao & Deng, Yong, 2020. "The vulnerability of communities in complex networks: An entropy approach," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. de Sá, Luiz Alberto Pereira & Zielinski, Kallil M.C. & Rodrigues, Érick Oliveira & Backes, André R. & Florindo, João B. & Casanova, Dalcimar, 2022. "A novel approach to estimated Boulingand-Minkowski fractal dimension from complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:12:p:1550147719892203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.