IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i1p1550147718755069.html
   My bibliography  Save this article

Potential field method for persistent surveillance of multiple unmanned aerial vehicle sensors

Author

Listed:
  • Changxin Huang
  • Wei Li
  • Chao Xiao
  • Binbin Liang
  • Songchen Han

Abstract

Persistent surveillance is one of the major tasks envisioned for unmanned aerial vehicles in that some regions of interest need to be continuously surveyed. This distinction from the one-time coverage/exploration does not allow a straightforward application of the most exploration techniques to address the persistent surveillance problem. This article introduces and demonstrates a method of alterable artificial potential field to control a group of unmanned aerial vehicles to stay over the region of interest. We present attractive potential field to drive the unmanned aerial vehicles to desirable areas, obstacle potential field to move away from obstacles, collision avoidance potential field to control unmanned aerial vehicles not to collide with others, and formation of potential field to make unmanned aerial vehicles gather in a group. The simulation results show that the proposed approach could generate collision-free path for unmanned aerial vehicles staying over the region of interest for a long endurance.

Suggested Citation

  • Changxin Huang & Wei Li & Chao Xiao & Binbin Liang & Songchen Han, 2018. "Potential field method for persistent surveillance of multiple unmanned aerial vehicle sensors," International Journal of Distributed Sensor Networks, , vol. 14(1), pages 15501477187, January.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:1:p:1550147718755069
    DOI: 10.1177/1550147718755069
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718755069
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718755069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yong-bo Chen & Guan-chen Luo & Yue-song Mei & Jian-qiao Yu & Xiao-long Su, 2016. "UAV path planning using artificial potential field method updated by optimal control theory," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(6), pages 1407-1420, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingli Yu & Decheng Kong & Xiaoxin Yan, 2018. "A Driving Behavior Planning and Trajectory Generation Method for Autonomous Electric Bus," Future Internet, MDPI, vol. 10(6), pages 1-14, June.
    2. Pan, Jeng-Shyang & Lv, Ji-Xiang & Yan, Li-Jun & Weng, Shao-Wei & Chu, Shu-Chuan & Xue, Jian-Kai, 2022. "Golden eagle optimizer with double learning strategies for 3D path planning of UAV in power inspection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 509-532.
    3. Ahmed, Gamil & Sheltami, Tarek & Mahmoud, Ashraf & Yasar, Ansar, 2020. "IoD swarms collision avoidance via improved particle swarm optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 260-278.
    4. Simone Fiori & Luca Bigelli & Federico Polenta, 2022. "Lie-Group Type Quadcopter Control Design by Dynamics Replacement and the Virtual Attractive-Repulsive Potentials Theory," Mathematics, MDPI, vol. 10(7), pages 1-37, March.
    5. Johannes Schmidt & Armin Fügenschuh, 2023. "A two-time-level model for mission and flight planning of an inhomogeneous fleet of unmanned aerial vehicles," Computational Optimization and Applications, Springer, vol. 85(1), pages 293-335, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:1:p:1550147718755069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.