IDEAS home Printed from https://ideas.repec.org/a/sae/inrsre/v6y1981i2p121-136.html
   My bibliography  Save this article

Embodied Energy Trade Balances among Regions

Author

Listed:
  • Philip J. Bourque

    (Graduate School of Business Administration, University of Washington, Seattle, Washington 98195 USA)

Abstract

The embodied energy trade flows concept is advanced as a useful technique for analyzing energy interdependence among regional economies. An analysis of the energy trade balances of Washington State is used to illustrate the theory. The embodied energy trade flow concept provides a broader perspective than alternative techniques for studying relationships between energy-producing and energy-consuming regions.

Suggested Citation

  • Philip J. Bourque, 1981. "Embodied Energy Trade Balances among Regions," International Regional Science Review, , vol. 6(2), pages 121-136, August.
  • Handle: RePEc:sae:inrsre:v:6:y:1981:i:2:p:121-136
    DOI: 10.1177/016001768100600202
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/016001768100600202
    Download Restriction: no

    File URL: https://libkey.io/10.1177/016001768100600202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    2. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    3. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    4. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    5. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    6. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    7. Papathanasopoulou, Eleni & Jackson, Tim, 2008. "Fossil resource trade balances: Emerging trends for the UK," Ecological Economics, Elsevier, vol. 66(2-3), pages 492-505, June.
    8. Kaltenegger, Oliver & Löschel, Andreas & Baikowski, Martin & Lingens, Jörg, 2017. "Energy costs in Germany and Europe: An assessment based on a (total real unit) energy cost accounting framework," Energy Policy, Elsevier, vol. 104(C), pages 419-430.
    9. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    10. Rutger Hoekstra & Marco Janssen, 2006. "Environmental responsibility and policy in a two-country dynamic input-output model," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 61-84.
    11. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    12. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    13. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    14. Lenzen, Manfred & Murray, Shauna A., 2001. "A modified ecological footprint method and its application to Australia," Ecological Economics, Elsevier, vol. 37(2), pages 229-255, May.
    15. Tatsuki Ueda, 2022. "Structural Decomposition Analysis of Japan’s Energy Transitions and Related CO2 Emissions in 2005–2015 Using a Hybrid Input-Output Table," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 763-786, April.
    16. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    17. Song, Feng & Reardon, Thomas & Tian, Xin & Lin, Chen, 2019. "The energy implication of China’s food system transformation," Applied Energy, Elsevier, vol. 240(C), pages 617-629.
    18. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    19. Ke Wang & Harrie Vredenburg & Jianliang Wang & Yi Xiong & Lianyong Feng, 2017. "Energy Return on Investment of Canadian Oil Sands Extraction from 2009 to 2015," Energies, MDPI, vol. 10(5), pages 1-13, May.
    20. Shepard, Jun U. & Pratson, Lincoln F., 2020. "Hybrid input-output analysis of embodied energy security," Applied Energy, Elsevier, vol. 279(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:6:y:1981:i:2:p:121-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.