IDEAS home Printed from https://ideas.repec.org/a/sae/inrsre/v35y2012i2p188-210.html
   My bibliography  Save this article

Protecting Supply Systems to Mitigate Potential Disaster

Author

Listed:
  • Maria Paola Scaparra
  • Richard Church

Abstract

Planning to mitigate the impacts of a disaster can be an important activity for both private companies and public agencies. In this article, the authors consider a supply system that provides needed goods or services to a region that may be the subject of some type of disaster, such as an attack by a terrorist or the result of a natural event or accident. The supply system is represented by a set of existing capacitated facilities. The authors assume that the loss of one or more facilities to a disaster will tighten available supply and increase the distances over which the service or good must be delivered, thereby increasing operation costs and reducing service. Such a disaster may even reduce the capacity of the supply/storage to the extent that the goods must be rationed as remaining supply may be outstripped by demand. The authors consider the case where resources may be available to mitigate some of the impacts of a possible disaster by the advanced protection of one or more facilities. The authors show how this problem can be formulated as a “tri-level†optimization model and propose a solution approach based on a tree search strategy. The authors demonstrate the policy implications of this model using a hypothetical planning problem. Through this example, the authors show how the results of our model can be used to inform planners and policy makers in disaster mitigation planning.

Suggested Citation

  • Maria Paola Scaparra & Richard Church, 2012. "Protecting Supply Systems to Mitigate Potential Disaster," International Regional Science Review, , vol. 35(2), pages 188-210, April.
  • Handle: RePEc:sae:inrsre:v:35:y:2012:i:2:p:188-210
    DOI: 10.1177/0160017611435357
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0160017611435357
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0160017611435357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    2. O'Hanley, Jesse R. & Church, Richard L., 2011. "Designing robust coverage networks to hedge against worst-case facility losses," European Journal of Operational Research, Elsevier, vol. 209(1), pages 23-36, February.
    3. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    4. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarhadi, Hassan & Tulett, David M. & Verma, Manish, 2017. "An analytical approach to the protection planning of a rail intermodal terminal network," European Journal of Operational Research, Elsevier, vol. 257(2), pages 511-525.
    2. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    3. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    4. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    5. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
    6. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    7. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2017. "Responsive contingency planning of capacitated supply networks under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 13-37.
    8. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    9. Albareda-Sambola, Maria & Hinojosa, Yolanda & Puerto, Justo, 2015. "The reliable p-median problem with at-facility service," European Journal of Operational Research, Elsevier, vol. 245(3), pages 656-666.
    10. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    11. Bhatt, Sneha Dhyani & Sinha, Ankur & Jayaswal, Sachin, 2024. "The capacitated r-hub interdiction problem with congestion: Models and solution approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    12. Jiang, J. & Liu, X., 2018. "Multi-objective Stackelberg game model for water supply networks against interdictions with incomplete information," European Journal of Operational Research, Elsevier, vol. 266(3), pages 920-933.
    13. Bhuiyan, Tanveer Hossain & Medal, Hugh R. & Harun, Sarah, 2020. "A stochastic programming model with endogenous and exogenous uncertainty for reliable network design under random disruption," European Journal of Operational Research, Elsevier, vol. 285(2), pages 670-694.
    14. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    15. Karabulut, Ezgi & Aras, Necati & Kuban Altınel, İ., 2017. "Optimal sensor deployment to increase the security of the maximal breach path in border surveillance," European Journal of Operational Research, Elsevier, vol. 259(1), pages 19-36.
    16. Ghaffarinasab, Nader & Atayi, Reza, 2018. "An implicit enumeration algorithm for the hub interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 267(1), pages 23-39.
    17. Medal, Hugh R. & Pohl, Edward A. & Rossetti, Manuel D., 2014. "A multi-objective integrated facility location-hardening model: Analyzing the pre- and post-disruption tradeoff," European Journal of Operational Research, Elsevier, vol. 237(1), pages 257-270.
    18. Ivanov, Dmitry & Pavlov, Alexander & Dolgui, Alexandre & Pavlov, Dmitry & Sokolov, Boris, 2016. "Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 7-24.
    19. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    20. F. Parvaresh & S. Hashemi Golpayegany & S. Moattar Husseini & B. Karimi, 2013. "Solving the p-hub Median Problem Under Intentional Disruptions Using Simulated Annealing," Networks and Spatial Economics, Springer, vol. 13(4), pages 445-470, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:35:y:2012:i:2:p:188-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.