IDEAS home Printed from https://ideas.repec.org/a/sae/evarev/v18y1994i6p651-677.html
   My bibliography  Save this article

Pediatric Pain, Predictive Inference, and Sensitivity Analysis

Author

Listed:
  • Robert Weiss

    (University of California-Los Angeles)

Abstract

The understanding, prevention, and treatment of pain is of great importance to medical science. Children were asked to immerse their hands in cold water until they were unable to tolerate the pain of the cold. The length of time that they kept their hands immersed is a measure of pain tolerance. Two factors were studied. One factor is a child's Coping Style (CS) with the pain (attenders pay attention to the pain, distracters think of other things), and it was assessed at a baseline trial. The other factor is Treatment (TMT), one of three counseling interventions (a null intervention, counseling to attend, or counseling to distract), and was randomly applied prior to the response. The covariate is a baseline measure of pain tolerance prior to the intervention. Distracters, taught to distract, tolerated the pain much better than any other group. No strategy improved attenders' pain tolerance. This article analyzes this data from a predictive Bayesian viewpoint. The assumption of constant variance is not met on the original scale, and some of the data is censored; furthermore, the censoring model is unknown. Simultaneous transformation of the response and baseline is used to search for a scale where the variance is constant. Predictive inference is used to provide interpretable inferences. A sensitivity analysis is used to determine whether the treatment of the censored data matters. Without the sensitivity analysis, we are left wondering whether the conclusions rest on a true underlying treatment effect or on cases of questionable quality. In spite of a devil's-advocate effort to produce an alternative model which leads to contradictory conclusions, no such model was found.

Suggested Citation

  • Robert Weiss, 1994. "Pediatric Pain, Predictive Inference, and Sensitivity Analysis," Evaluation Review, , vol. 18(6), pages 651-677, December.
  • Handle: RePEc:sae:evarev:v:18:y:1994:i:6:p:651-677
    DOI: 10.1177/0193841X9401800601
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0193841X9401800601
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0193841X9401800601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    2. Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
    3. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    4. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    5. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    6. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    7. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    8. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    9. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    10. Jenkins, Amanda & Velandia, Margarita & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Martin, Steven W., 2011. "Factors Influencing the Selection of Precision Farming Information Sources by Cotton Producers," Agricultural and Resource Economics Review, Cambridge University Press, vol. 40(2), pages 307-320, September.
    11. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    12. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    13. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    14. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    15. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    16. Zhou, Guofu, 1995. "Small sample rank tests with applications to asset pricing," Journal of Empirical Finance, Elsevier, vol. 2(1), pages 71-93, March.
    17. Fok, Dennis & Franses, Philip Hans, 2007. "Modeling the diffusion of scientific publications," Journal of Econometrics, Elsevier, vol. 139(2), pages 376-390, August.
    18. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    19. Jean-Francois Richard & Roman Liesenfeld, 2007. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Working Paper 322, Department of Economics, University of Pittsburgh, revised Jan 2004.
    20. Mengheng Li & Ivan Mendieta‐Muñoz, 2020. "Are long‐run output growth rates falling?," Metroeconomica, Wiley Blackwell, vol. 71(1), pages 204-234, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:evarev:v:18:y:1994:i:6:p:651-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.