Physical distancing and its association with travel behavior in daily pre-pandemic urban life: An analysis utilizing lifelogging images and composite survey and mobility data
Author
Abstract
Suggested Citation
DOI: 10.1177/23998083231215822
Download full text from publisher
References listed on IDEAS
- Hong, Jinhyun & Thakuriah, Piyushimita Vonu, 2018. "Examining the relationship between different urbanization settings, smartphone use to access the Internet and trip frequencies," Journal of Transport Geography, Elsevier, vol. 69(C), pages 11-18.
- Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
- Eisenmann, Christine & Nobis, Claudia & Kolarova, Viktoriya & Lenz, Barbara & Winkler, Christian, 2021. "Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground," Transport Policy, Elsevier, vol. 103(C), pages 60-67.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vega-Gonzalo, Maria & Gomez, Juan & Christidis, Panayotis, 2023. "How has COVID-19 changed private car use in European urban areas? An analysis of the effect of socio-economic characteristics and mobility habits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
- Jinhyun Hong & David Philip McArthur & Mark Livingston, 2019. "Can Accessing the Internet while Travelling Encourage Commuters to Use Public Transport Regardless of Their Attitude?," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
- Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
- Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
- Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
- Jie Gao & Dick Ettema & Marco Helbich & Carlijn B. M. Kamphuis, 2019. "Travel mode attitudes, urban context, and demographics: do they interact differently for bicycle commuting and cycling for other purposes?," Transportation, Springer, vol. 46(6), pages 2441-2463, December.
- Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
- Mi Namgung & B. Elizabeth Mercado Gonzalez & Seungwoo Park, 2019. "The Role of Built Environment on Health of Older Adults in Korea: Obesity and Gender Differences," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
- Kim, Jinwon & Brownstone, David, 2010. "The impact of residential density on vehicle usage and fuel consumption," University of California Transportation Center, Working Papers qt31m0w2x3, University of California Transportation Center.
- van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
- Ferreira, Sara & Amorim, Marco & Lobo, António & Kern, Mira & Fanderl, Nora & Couto, António, 2022. "Travel mode preferences among German commuters over the course of COVID-19 pandemic," Transport Policy, Elsevier, vol. 126(C), pages 55-64.
- Oluwayemi-Oniya Aderibigbe & Trynos Gumbo, 2022. "Variations in Mode Choice of Residents Prior and during COVID-19: An Empirical Evidence from Johannesburg, South Africa," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
- Chunguang Liu & Xinyu Zuo & Xiaoning Gu & Mengru Shao & Chao Chen, 2023. "Activity Duration under the COVID-19 Pandemic: A Comparative Analysis among Different Urbanized Areas Using a Hazard-Based Duration Model," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
- Daniel Albalate & Xavier Fageda, 2022. ""Have Low Emission Zones slowed urban traffic recovery after Covid-19?"," IREA Working Papers 202222, University of Barcelona, Research Institute of Applied Economics, revised Dec 2022.
- Shuai Yu & Bin Li & Dongmei Liu, 2023. "Exploring the Public Health of Travel Behaviors in High-Speed Railway Environment during the COVID-19 Pandemic from the Perspective of Trip Chain: A Case Study of Beijing–Tianjin–Hebei Urban Agglomera," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
- Doddamani, Chetan & Manoj, M. & Maurya, Yashasvi, 2021. "Geographical scale of residential relocation and its impacts on vehicle ownership and travel behavior," Journal of Transport Geography, Elsevier, vol. 94(C).
- Humpe, Andreas & Gössling, Stefan & Haustein, Sonja, 2022. "Car careers: A socio-psychological evaluation of aspirational automobile ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 156-166.
- Yusuf Sofiyandi & Yusuf Reza Kurniawan & Khoirunurrofik & Prayoga Wiradisuria & Dikki Nur Ahmad Saleh, 2021. "Quantifying the Impacts of COVID-19 Mobility Restrictions on Ridership and Farebox Revenues: The Case of Mass Rapid Transit in Jakarta, Indonesia," LPEM FEBUI Working Papers 202162, LPEM, Faculty of Economics and Business, University of Indonesia, revised 2021.
- Abu Toasin Oakil & Dorien Manting & Hans Nijland, 2018. "The role of individual characteristics in car ownership shortly after relationship dissolution," Transportation, Springer, vol. 45(6), pages 1871-1882, November.
- Wang, Fenglong & Mao, Zidan & Wang, Donggen, 2020. "Residential relocation and travel satisfaction change: An empirical study in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 341-353.
More about this item
Keywords
Physical distancing analytics; travel behavior; lifelogging and image data; computer vision; social and physical isolation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:51:y:2024:i:8:p:1758-1774. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.