IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v50y2023i7p1822-1837.html
   My bibliography  Save this article

Study on the hotspots of urban tourism spaces based on Instagram-Worthy locations data: Taking Beijing as an example

Author

Listed:
  • Lai Fan
  • Dayu Zhang

Abstract

As the mobile Internet emerges, numerous Instagram-worthy locations gradually constitute new spaces of urban tourism. For instance, the Xiaohongshu application, a community with shared content, has increasingly become a platform for people to share well-known tourist attractions, providing a new perspective for the study of the popularity of tourism spaces. On the basis of data of ticking off Instagram-worthy locations from the Xiaohongshu application, the present study aims to identify tourism hotspots in Beijing, analyze their spatial characteristics, and explore their evolution features from two dimensions of time and space. In addition, the emotional images of tourism hotspots in Beijing are interpreted by semantic analysis with an internal mechanism that influences those locations explored. The results of the study show that (1) the overall spatial structure of tourism hotspots in Beijing is C-shaped, which expands from the core area to the periphery with the feature of a circle layer. (2) under the influence of the COVID-19 pandemic, the spatial distribution center of tourism hotspots in Beijing is gradually shifting to the Southeast with the tendency of expanding to the surrounding suburbs. (3) the reception and serviceability of the tourist attractions have a significant influence on the popularity of tourism hotspots. To date, less research has been focused on the data of ticking off emerging Instagram-worthy locations like the Xiaohongshu application, and there is a dearth of the study related to in-depth excavation of the internal influencing mechanism of their popularity. This paper, therefore, under the interaction of virtual and reality, provides new ideas and methods for studying the popularity of urban tourist attractions.

Suggested Citation

  • Lai Fan & Dayu Zhang, 2023. "Study on the hotspots of urban tourism spaces based on Instagram-Worthy locations data: Taking Beijing as an example," Environment and Planning B, , vol. 50(7), pages 1822-1837, September.
  • Handle: RePEc:sae:envirb:v:50:y:2023:i:7:p:1822-1837
    DOI: 10.1177/23998083221146542
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083221146542
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083221146542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chua, Alvin & Servillo, Loris & Marcheggiani, Ernesto & Moere, Andrew Vande, 2016. "Mapping Cilento: Using geotagged social media data to characterize tourist flows in southern Italy," Tourism Management, Elsevier, vol. 57(C), pages 295-310.
    2. Raun, Janika & Ahas, Rein & Tiru, Margus, 2016. "Measuring tourism destinations using mobile tracking data," Tourism Management, Elsevier, vol. 57(C), pages 202-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoltán Kovács & György Vida & Ábel Elekes & Tamás Kovalcsik, 2021. "Combining Social Media and Mobile Positioning Data in the Analysis of Tourist Flows: A Case Study from Szeged, Hungary," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    2. Tao Liu & Ying Zhang & Huan Zhang & Xiping Yang, 2021. "A Methodological Workflow for Deriving the Association of Tourist Destinations Based on Online Travel Reviews: A Case Study of Yunnan Province, China," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    3. Chunla Liu & Yingjie Qin & Yufei Wang & Yue Yu & Guanghui Li, 2022. "Spatio-Temporal Distribution of Tourism Flows and Network Analysis of Traditional Villages in Western Hunan," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    4. Ana Muñoz-Mazón & Laura Fuentes-Moraleda & Angela Chantre-Astaiza & Marlon-Felipe Burbano-Fernandez, 2019. "The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    5. Tarmo Kalvet & Maarja Olesk & Marek Tiits & Janika Raun, 2020. "Innovative Tools for Tourism and Cultural Tourism Impact Assessment," Sustainability, MDPI, vol. 12(18), pages 1-30, September.
    6. Yamilé Pérez Guilarte & Daniel Barreiro Quintáns, 2019. "Using Big Data to Measure Tourist Sustainability: Myth or Reality?," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    7. Marina Toger & Karima Kourtit & Peter Nijkamp & John Östh, 2021. "Mobility during the COVID-19 Pandemic: A Data-Driven Time-Geographic Analysis of Health-Induced Mobility Changes," Sustainability, MDPI, vol. 13(7), pages 1-21, April.
    8. Tosporn Arreeras & Mikiharu Arimura & Takumi Asada & Saharat Arreeras, 2019. "Association Rule Mining Tourist-Attractive Destinations for the Sustainable Development of a Large Tourism Area in Hokkaido Using Wi-Fi Tracking Data," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    9. Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
    10. Marina Paolanti & Adriano Mancini & Emanuele Frontoni & Andrea Felicetti & Luca Marinelli & Ernesto Marcheggiani & Roberto Pierdicca, 2021. "Tourism destination management using sentiment analysis and geo-location information: a deep learning approach," Information Technology & Tourism, Springer, vol. 23(2), pages 241-264, June.
    11. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    12. Anne Hardy & Sarah Hyslop & Kate Booth & Brady Robards & Jagannath Aryal & Ulrike Gretzel & Richard Eccleston, 2017. "Tracking tourists’ travel with smartphone-based GPS technology: a methodological discussion," Information Technology & Tourism, Springer, vol. 17(3), pages 255-274, September.
    13. María Cristina Rodríguez Rangel & Marcelino Sánchez Rivero & Julián Ramajo Hernández, 2020. "A Spatial Analysis of Intensity in Tourism Accommodation: An Application for Extremadura (Spain)," Economies, MDPI, vol. 8(2), pages 1-21, April.
    14. Zhang, Xiaowei & Yang, Yang & Zhang, Yi & Zhang, Zili, 2020. "Designing tourist experiences amidst air pollution: A spatial analytical approach using social media," Annals of Tourism Research, Elsevier, vol. 84(C).
    15. Pattama Krataithong & Chutiporn Anutariya & Marut Buranarach, 2022. "A Taxi Trajectory and Social Media Data Management Platform for Tourist Behavior Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    16. Shah Jahan Miah & HuyQuan Vu & John Gammack, 2019. "A big-data analytics method for capturing visitor activities and flows: the case of an island country," Information Technology and Management, Springer, vol. 20(4), pages 203-221, December.
    17. Saluveer, Erki & Raun, Janika & Tiru, Margus & Altin, Laura & Kroon, Jaanus & Snitsarenko, Tarass & Aasa, Anto & Silm, Siiri, 2020. "Methodological framework for producing national tourism statistics from mobile positioning data," Annals of Tourism Research, Elsevier, vol. 81(C).
    18. Kádár, Bálint & Gede, Mátyás, 2021. "Tourism flows in large-scale destination systems," Annals of Tourism Research, Elsevier, vol. 87(C).
    19. Weng, Weizhe & Yan, Lingxiao & Boyle, Kevin J. & Parsons, George R., 2022. "COVID-19 and Visitation to Central Park, New York City," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322086, Agricultural and Applied Economics Association.
    20. Babakhani, Nazila & Leisch, Friedrich & Dolnicar, Sara, 2019. "A good graph is worth a thousand numbers," Annals of Tourism Research, Elsevier, vol. 76(C), pages 338-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:50:y:2023:i:7:p:1822-1837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.