Towards the collaborative development of machine learning techniques in planning support systems – a Sydney example
Author
Abstract
Suggested Citation
DOI: 10.1177/2399808320939974
Download full text from publisher
References listed on IDEAS
- Chris Pettit & Y Shi & H Han & M Rittenbruch & M Foth & S Lieske & R van den Nouwelant & P Mitchell & S Leao & B Christensen & M Jamal, 2020. "A new toolkit for land value analysis and scenario planning," Environment and Planning B, , vol. 47(8), pages 1490-1507, October.
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Silva, Cecília & Bertolini, Luca & te Brömmelstroet, Marco & Milakis, Dimitris & Papa, Enrica, 2017. "Accessibility instruments in planning practice: Bridging the implementation gap," Transport Policy, Elsevier, vol. 53(C), pages 135-145.
- Geertman, Stan, 2017. "PSS: Beyond the implementation gap," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 70-76.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
- Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
- Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
- Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024.
"Predicting dropout from higher education: Evidence from Italy,"
Economic Modelling, Elsevier, vol. 130(C).
- Marco Delogu & Raffaelle Lagravinese & Dimitri Paolini & Giuliano Resce, 2020. "Predicting dropout from higher education: Evidence from Italy," DEM Discussion Paper Series 22-06, Department of Economics at the University of Luxembourg.
- Heller, Yuval & Tubul, Itay, 2023. "Strategies in the repeated prisoner’s dilemma: A cluster analysis," MPRA Paper 117444, University Library of Munich, Germany.
- Michael J. Weir & Thomas W. Sproul, 2019. "Identifying Drivers of Genetically Modified Seafood Demand: Evidence from a Choice Experiment," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
- Shlomit Flint Ashery & Carl Steinitz, 2022. "Issue-Based Complexity: Digitally Supported Negotiation in Geodesign Linking Planning and Implementation," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
- Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
- Hazal Colak Oz & Çiçek Güven & Gonzalo Nápoles, 2023. "School dropout prediction and feature importance exploration in Malawi using household panel data: machine learning approach," Journal of Computational Social Science, Springer, vol. 6(1), pages 245-287, April.
- Tsun Se Cheong & Guanghua Wan & David Kam Hung Chui, 2022. "Unveiling the Relationship between Economic Growth and Equality for Developing Countries," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 30(5), pages 1-28, September.
- Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021.
"Selecting Directors Using Machine Learning [The role of boards of directors in corporate governance: A conceptual framework and survey],"
The Review of Financial Studies, Society for Financial Studies, vol. 34(7), pages 3226-3264.
- Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021. "Selecting Directors Using Machine Learning," NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3226-3264, National Bureau of Economic Research, Inc.
- Erel, Isil & Stern, Lea Henny & Tan, Chenhao & Weisbach, Michael S., 2018. "Selecting Directors Using Machine Learning," Working Paper Series 2018-05, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Isil Erel & Léa H. Stern & Chenhao Tan & Michael S. Weisbach, 2018. "Selecting Directors Using Machine Learning," NBER Working Papers 24435, National Bureau of Economic Research, Inc.
- Falco J. Bargagli Stoffi & Kenneth De Beckker & Joana E. Maldonado & Kristof De Witte, 2021. "Assessing Sensitivity of Machine Learning Predictions.A Novel Toolbox with an Application to Financial Literacy," Papers 2102.04382, arXiv.org.
- Francesco Decarolis & Cristina Giorgiantonio, 2020. "Corruption red flags in public procurement: new evidence from Italian calls for tenders," Questioni di Economia e Finanza (Occasional Papers) 544, Bank of Italy, Economic Research and International Relations Area.
- Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
- Emanuel Kohlscheen, 2022.
"Quantifying the Role of Interest Rates, the Dollar and Covid in Oil Prices,"
Papers
2208.14254, arXiv.org, revised Oct 2022.
- Emanuel Kohlscheen, 2022. "Quantifying the role of interest rates, the Dollar and Covid in oil prices," BIS Working Papers 1040, Bank for International Settlements.
- Giri, Prashant & Sharma, Tarun, 2024. "Market instrument for the first fuel and its role in decarbonizing Indian industrial production," Energy Policy, Elsevier, vol. 190(C).
- Amitabh Chandra & Evan Flack & Ziad Obermeyer, 2021. "The Health Costs of Cost-Sharing," NBER Working Papers 28439, National Bureau of Economic Research, Inc.
- Hannes Mueller & Christopher Rauh, 2022.
"The Hard Problem of Prediction for Conflict Prevention,"
Journal of the European Economic Association, European Economic Association, vol. 20(6), pages 2440-2467.
- Hannes Mueller & Christopher Rauh, 2019. "The hard problem of prediction for conflict prevention," Cahiers de recherche 2019-02, Universite de Montreal, Departement de sciences economiques.
- Mueller, H. & Rauh, C., 2020. "The Hard Problem of Prediction for Conflict Prevention," Cambridge Working Papers in Economics 2015, Faculty of Economics, University of Cambridge.
- Hannes Mueller & Christopher Rauh, 2019. "The Hard Problem of Prediction for Conflict Prevention," Cahiers de recherche 02-2019, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Hannes Mueller & Christopher Rauh, 2021. "The Hard Problem of Prediction for Conflict Prevention," Working Papers 1244, Barcelona School of Economics.
- Mueller, H. & Rauh, C., 2021. "The Hard Problem of Prediction for Conflict Prevention," Cambridge Working Papers in Economics 2103, Faculty of Economics, University of Cambridge.
- Mueller, Hannes & Rauh, Christopher, 2019. "The Hard Problem of Prediction for Conflict Prevention," CEPR Discussion Papers 13748, C.E.P.R. Discussion Papers.
- Gao, Qishuo & Shi, Vivien & Pettit, Christopher & Han, Hoon, 2022. "Property valuation using machine learning algorithms on statistical areas in Greater Sydney, Australia," Land Use Policy, Elsevier, vol. 123(C).
More about this item
Keywords
Machine learning; urban development; planning support systems; co-design; mixed methods;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:48:y:2021:i:3:p:484-502. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.