IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v47y2020i6p1047-1064.html
   My bibliography  Save this article

Modelling urban growth incorporating spatial interactions between the cities: The example of the Tehran metropolitan region

Author

Listed:
  • Sanaz Alaei Moghadam
  • Mohammad Karimi

    (K.N. Toosi University of Technology, Iran)

  • Kyoumars Habibi

Abstract

Interactions between cities play a significant role in the development of metropolitan regions. Although these interactions and their role in the urban growth modelling have already been investigated, there is still room for more studies. In this research, in addition to conventional urban growth factors, spatial interactions between the cities (SIBC) are incorporated into urban growth modelling. This causes directional trends in urban growth (DTUG). Therefore, first the DTUG of each city was measured using a developed indicator based on the history of urban growth that was extracted from satellite images and spatial statistics. The SIBC was then estimated by integrating the DTUG of the cities. Finally, the SIBC and other driving forces, including the physical suitability, accessibility and neighbourhood effects, were integrated using a cellular automata-based model. The accuracy of the model in the Tehran metropolitan region was increased by 6.44% after considering the SIBC. The analysis of the DTUG and SIBC in the Tehran metropolitan region during 1991–2000–2007–2014 revealed specific patterns as the spatial interactions intensified over time and usually peaked in the periphery of the central business districts and intense interactions existed between the metropolises and other major cities. These findings could help urban managers with strategic decision-making in the metropolitan regions and adjust the science and practice relation in this field.

Suggested Citation

  • Sanaz Alaei Moghadam & Mohammad Karimi & Kyoumars Habibi, 2020. "Modelling urban growth incorporating spatial interactions between the cities: The example of the Tehran metropolitan region," Environment and Planning B, , vol. 47(6), pages 1047-1064, July.
  • Handle: RePEc:sae:envirb:v:47:y:2020:i:6:p:1047-1064
    DOI: 10.1177/2399808318816701
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808318816701
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808318816701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bin Wang & Wenzhong Shi & Zelang Miao, 2015. "Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    2. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    3. repec:asg:wpaper:1001 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Tao & Guoan Tang & Yihao Wu & Tong Zhou, 2022. "Spatiotemporal Heterogeneity and Driving Mechanism of Co-Ordinated Urban Development: A Case Study of the Central Area of the Yangtze River Delta, China," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    4. Hong Shi & Ji Yang & Qijuan Liu & Taohong Li & Ning Chris Chen, 2024. "Impacts of Climate and Land-Use Change on Fraction Vegetation Coverage Based on PLUS-Dimidiate Pixel Model," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    5. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    6. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    7. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    8. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    9. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    10. Jaekyung Lee & Galen Newman & Yunmi Park, 2018. "A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    11. Prashanti Sharma & Rajesh Bahadur Thapa & Mir Abdul Matin, 2020. "Examining forest cover change and deforestation drivers in Taunggyi District, Shan State, Myanmar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5521-5538, August.
    12. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    13. Junnan Xiong & Chongchong Ye & Weiming Cheng & Liang Guo & Chenghu Zhou & Xiaolei Zhang, 2019. "The Spatiotemporal Distribution of Flash Floods and Analysis of Partition Driving Forces in Yunnan Province," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    14. Javier Muro & Leo Zurita-Arthos & José Jara & Esteban Calderón & Richard Resl & Andreas Rienow & Valerie Graw, 2020. "Earth Observation for Settlement Mapping of Amazonian Indigenous Populations to Support SDG7," Resources, MDPI, vol. 9(8), pages 1-17, August.
    15. van Vliet, Jasper & Hagen-Zanker, Alex & Hurkens, Jelle & van Delden, Hedwig, 2013. "A fuzzy set approach to assess the predictive accuracy of land use simulations," Ecological Modelling, Elsevier, vol. 261, pages 32-42.
    16. Ding, Dan & Liu, Xiaoping & Xu, Xiaocong, 2024. "Projecting the future fine-resolution carbon dioxide emissions under the shared socioeconomic pathways for carbon peak evaluation," Applied Energy, Elsevier, vol. 365(C).
    17. Ramita Manandhar & Inakwu O.A. Odeh & Tihomir Ancev, 2014. "Assessment of Spatial-Temporal Expansion of Built-up and Residential-Commercial Dwellings with Some Economic Implications: A Case Study in the Lower Hunter of Eastern Australia," Land, MDPI, vol. 3(1), pages 1-21, March.
    18. Gustavo Larrea‐Gallegos & Ian Vázquez‐Rowe, 2022. "Exploring machine learning techniques to predict deforestation to enhance the decision‐making of road construction projects," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 225-239, February.
    19. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    20. Elżbieta Antczak, 2018. "Building W Matrices Using Selected Geostatistical Tools: Empirical Examination and Application," Stats, MDPI, vol. 1(1), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:47:y:2020:i:6:p:1047-1064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.