IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v38y2011i1p61-81.html
   My bibliography  Save this article

A Technique for Rapidly Forecasting Regional Urban Growth

Author

Listed:
  • James Westervelt

    (US Army Engineer Research and Development Center, Construction Engineering Research Laboratory, PO Box 9005, Champaign, IL 61826, USA)

  • Todd BenDor

    (Department of City and Regional Planning, University of North Carolina at Chapel Hill, CB #3140, New East Building, Chapel Hill, NC 27599-3140, USA)

  • Joseph Sexton

    (NASA Goddard Spaceflight Center, Greenbelt, MD 20771, USA)

Abstract

Recent technological and theoretical advances have helped produce a wide variety of computer models for simulating future urban land-use change. However, implementing these models is often cost prohibitive due to intensive data-collection requirements and complex technical implementation. There is a growing need for a rapid, inexpensive method to project regional urban growth for the purposes of assessing environmental impacts and implementing long-term growth-management plans. We present the Regional Urban Growth (RUG) model, an extensible mechanism for assessing the relative attractiveness of a given location for urban growth within a region. This model estimates development attraction for every location in a rasterized landscape on the basis of proximity to development attractors, such as existing dense development, roads, highways, and natural amenities. RUG can be rapidly installed, parameterized, calibrated, and run on almost any several-county region within the USA. We implement the RUG model for a twelve-county region surrounding the Jordan Lake Reservoir, an impoundment of the Haw River Watershed (North Carolina, USA). This reservoir is experiencing major water-quality problems due to increased runoff from rapid urban growth. We demonstrate the RUG model by testing three scenarios that assume (1) ‘business-as-usual’ growth levels, (2) enforcement of state-mandated riparian buffer regulations, and (3) riparian buffer regulations augmented with forecast conservation measures. Our findings suggest that the RUG model can be useful not only for environmental assessments, stakeholder engagement, and regional planning purposes, but also for studying specific state and regional policy interventions on the direction and location of future growth pressure.

Suggested Citation

  • James Westervelt & Todd BenDor & Joseph Sexton, 2011. "A Technique for Rapidly Forecasting Regional Urban Growth," Environment and Planning B, , vol. 38(1), pages 61-81, February.
  • Handle: RePEc:sae:envirb:v:38:y:2011:i:1:p:61-81
    DOI: 10.1068/b36029
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b36029
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b36029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Deal, Brian & Schunk, Daniel, 2004. "Spatial dynamic modeling and urban land use transformation: a simulation approach to assessing the costs of urban sprawl," Ecological Economics, Elsevier, vol. 51(1-2), pages 79-95, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    2. Zimu Jia & Long Chen & Jingjia Chen & Guowei Lyu & Ding Zhou & Ying Long, 2020. "Urban modeling for streets using vector cellular automata: Framework and its application in Beijing," Environment and Planning B, , vol. 47(8), pages 1418-1439, October.
    3. Xin Zhang & Jinghu Pan, 2021. "Spatiotemporal Pattern and Driving Factors of Urban Sprawl in China," Land, MDPI, vol. 10(11), pages 1-16, November.
    4. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.
    5. Eda Ustaoglu & Brendan Williams & Laura O. Petrov & Harutyun Shahumyan & Hedwig Van Delden, 2017. "Developing and Assessing Alternative Land-Use Scenarios from the MOLAND Model: A Scenario-Based Impact Analysis Approach for the Evaluation of Rapid Rail Provisions and Urban Development in the Greate," Sustainability, MDPI, vol. 10(1), pages 1-34, December.
    6. Guillaume POUYANNE & Laëtitia GUILHOT & André MEUNIÉ, 2018. "L'usage de l'automobile et la structure spatiale en Chine : le modèle de ville compacte en question," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 48, pages 105-120.
    7. Haozhi Pan & Stan Geertman & Brian Deal, 2020. "What does urban informatics add to planning support technology?," Environment and Planning B, , vol. 47(8), pages 1317-1325, October.
    8. Eric de Noronha Vaz & Teresa de Noronha & Peter Nijkamp, 2013. "An Exploratory Landscape Metrics Approach to Agricultural Changes: Applications of Spatial Economic Consequences for the Algarve, Portugal," Tinbergen Institute Discussion Papers 13-140/VIII, Tinbergen Institute.
    9. Brian Deal & Haozhi Pan, 2016. "Discerning and Addressing Environmental Failures in Policy Scenarios Using Planning Support System (PSS) Technologies," Sustainability, MDPI, vol. 9(1), pages 1-17, December.
    10. Daniel Schunk & Bruce Hannon, 2004. "Impacts of a carbon tax policy on Illinois grain farms: a dynamic simulation study," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 6(3), pages 221-247, September.
    11. Verstegen, Judith A. & Goch, Katarzyna, 2022. "Pattern-oriented calibration and validation of urban growth models: Case studies of Dublin, Milan and Warsaw," Land Use Policy, Elsevier, vol. 112(C).
    12. Mörtberg, Ulla & Goldenberg, Romain & Kalantari, Zahra & Kordas, Olga & Deal, Brian & Balfors, Berit & Cvetkovic, Vladimir, 2017. "Integrating ecosystem services in the assessment of urban energy trajectories – A study of the Stockholm Region," Energy Policy, Elsevier, vol. 100(C), pages 338-349.
    13. Altonji, Matthew & Lang, Corey & Puggioni, Gavino, 2016. "Can urban areas help sustain the preservation of open space? Evidence from statewide referenda," Ecological Economics, Elsevier, vol. 130(C), pages 82-91.
    14. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    15. O. Barron & M. Donn & A. Barr, 2013. "Urbanisation and Shallow Groundwater: Predicting Changes in Catchment Hydrological Responses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 95-115, January.
    16. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    17. Dong-jin Lee & Seong Woo Jeon, 2020. "Estimating Changes in Habitat Quality through Land-Use Predictions: Case Study of Roe Deer ( Capreolus pygargus tianschanicus ) in Jeju Island," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    18. Zipan Cai & Bo Wang & Cong Cong & Vladimir Cvetkovic, 2020. "Spatial dynamic modelling for urban scenario planning: A case study of Nanjing, China," Environment and Planning B, , vol. 47(8), pages 1380-1396, October.
    19. Martínez-Fernández, Julia & Esteve-Selma, Miguel Angel & Baños-González, Isabel & Carreño, Francisca & Moreno, Angeles, 2013. "Sustainability of Mediterranean irrigated agro-landscapes," Ecological Modelling, Elsevier, vol. 248(C), pages 11-19.
    20. Parviz Azizi & Ali Soltani & Farokh Bagheri & Shahrzad Sharifi & Mehdi Mikaeili, 2022. "An Integrated Modelling Approach to Urban Growth and Land Use/Cover Change," Land, MDPI, vol. 11(10), pages 1-26, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:38:y:2011:i:1:p:61-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.