IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v29y2002i2p281-301.html
   My bibliography  Save this article

Linking Infrastructure and Urban Economy: Simulation of Water-Disruption Impacts in Earthquakes

Author

Listed:
  • Stephanie E Chang
  • Walter D Svekla
  • Masanobu Shinozuka

    (Department of Civil and Environmental Engineering, University of California at Irvine, Irvine, CA 92697-2175, USA)

Abstract

In this paper a simulation approach to modeling the linkages between physical infrastructure systems and the urban economy is developed. A simulation approach based on probabilistically specifying the key model relationships is effective for situations that involve substantial uncertainty, and is particularly suited to assessing risk from natural hazards. In this paper, a model of economic losses from earthquakes is developed and applied to the Memphis, Tennessee, region of the United States. We focus on water as a critical infrastructure service supporting the urban economy. The methodological approach involves systems integration of natural-science, engineering, and social-science databases and models. The concept of infrastructure services provides the linchpin in this integration process. Key spatial, temporal, and functional dimensions of infrastructure services are explicitly modeled in the simulation framework. The resulting model permits the analyst to compare the effectiveness of alternative actions, including both predisaster mitigation and postdisaster emergency-response activities. The model is calibrated in part with data from the 1994 Northridge and 1995 Kobe earthquakes. Results for several scenario earthquakes indicate the likely range of loss from economic disruption as well as uncertainties associated with the loss estimates. Sensitivity analysis indicates that one type of risk-management strategy for the water system, retrofitting pump stations, appears to be highly effective in reducing expected losses from future disasters.

Suggested Citation

  • Stephanie E Chang & Walter D Svekla & Masanobu Shinozuka, 2002. "Linking Infrastructure and Urban Economy: Simulation of Water-Disruption Impacts in Earthquakes," Environment and Planning B, , vol. 29(2), pages 281-301, April.
  • Handle: RePEc:sae:envirb:v:29:y:2002:i:2:p:281-301
    DOI: 10.1068/b2789
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b2789
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b2789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sungbin Cho & Peter Gordon & James E. Moore II & Harry W. Richardson & Masanobu Shinozuka & Stephanie Chang, 2001. "Integrating Transportation Network and Regional Economic Models to Estimate the Costs of a Large Urban Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 41(1), pages 39-65, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    2. Yasuyuki Todo & Kentaro Nakajima & Petr Matous, 2015. "How Do Supply Chain Networks Affect The Resilience Of Firms To Natural Disasters? Evidence From The Great East Japan Earthquake," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 209-229, March.
    3. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    4. Vanessa N. Vargas & Mark A. Ehlen, 2013. "REAcct: a scenario analysis tool for rapidly estimating economic impacts of major natural and man-made hazards," Environment Systems and Decisions, Springer, vol. 33(1), pages 76-88, March.
    5. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    6. Iman Rahimi Aloughareh & Mohsen Ghafory Ashtiany & Kiarash Nasserasadi, 2016. "An Integrated Methodology For Regional Macroeconomic Loss Estimation Of Earthquake: A Case Study Of Tehran," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(04), pages 1-24, September.
    7. Henriet, Fanny & Hallegatte, Stéphane & Tabourier, Lionel, 2012. "Firm-network characteristics and economic robustness to natural disasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 150-167.
    8. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    9. Joost R. Santos, 2006. "Inoperability input‐output modeling of disruptions to interdependent economic systems," Systems Engineering, John Wiley & Sons, vol. 9(1), pages 20-34, March.
    10. Nogal, Maria & Morales Nápoles, Oswaldo & O’Connor, Alan, 2019. "Structured expert judgement to understand the intrinsic vulnerability of traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 136-152.
    11. Ariel Belasen & Chifeng Dai, 2014. "When oceans attack: assessing the impact of hurricanes on localized taxable sales," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 325-342, March.
    12. Joost R. Santos & Yacov Y. Haimes & Chenyang Lian, 2007. "A Framework for Linking Cybersecurity Metrics to the Modeling of Macroeconomic Interdependencies," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1283-1297, October.
    13. Scott Thacker & Scott Kelly & Raghav Pant & Jim W. Hall, 2018. "Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 134-150, January.
    14. Ichihara, Silvio Massaru & Guilhoto, Joaquim José Martins & Imori, Denise, 2009. "Combining geoprocessing and interregional input-output systems: An application to the State of São Paulo in Brazil," MPRA Paper 30696, University Library of Munich, Germany.
    15. Jie Zhang & Meng Lu & Lulu Zhang & Yadong Xue, 2021. "Assessing indirect economic losses of landslides along highways," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2775-2796, April.
    16. Ichihara, Silvio Massaru & Guilhoto, Joaquim José Martins & Imori, Denise, 2008. "Geoprocessing and estimation of interregional input-output systems an application to the state of Sao Paulo in Brazil," MPRA Paper 54036, University Library of Munich, Germany.
    17. Tuzun Aksu, Dilek & Ozdamar, Linet, 2014. "A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 56-67.
    18. Stéphane Hallegatte & Fanny Henriet & Jan Corfee-Morlot, 2011. "The economics of climate change impacts and policy benefits at city scale: a conceptual framework," Climatic Change, Springer, vol. 104(1), pages 51-87, January.
    19. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    20. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:29:y:2002:i:2:p:281-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.