IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v12y1985i4p443-453.html
   My bibliography  Save this article

Facility Layout Optimization Using the Metropolis Algorithm

Author

Listed:
  • R Sharpe
  • B S Marksjö

Abstract

A radically new approach to facility layout optimization involving nonconvex quadratic assignment problems is presented. The approach uses a simulated annealing technique originally developed to solve problems in statistical mechanics by Metropolis et al, and recently applied to VLSI chip design problems. The Metropolis algorithm is relatively simple to apply and a microcomputer model called TOPMET has been developed. TOPMET is shown to produce superior solutions to some of the more popular computer-planning techniques and hand-generated methods. The algorithm also lends itself readily to user interaction and colour graphics display, and its application is illustrated by a practical building problem. Extensions into artificial intelligence are discussed.

Suggested Citation

  • R Sharpe & B S Marksjö, 1985. "Facility Layout Optimization Using the Metropolis Algorithm," Environment and Planning B, , vol. 12(4), pages 443-453, December.
  • Handle: RePEc:sae:envirb:v:12:y:1985:i:4:p:443-453
    DOI: 10.1068/b120443
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b120443
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b120443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher E. Nugent & Thomas E. Vollmann & John Ruml, 1968. "An Experimental Comparison of Techniques for the Assignment of Facilities to Locations," Operations Research, INFORMS, vol. 16(1), pages 150-173, February.
    2. Hitchings, G. G. & Cottam, M, 1976. "An efficient heuristic procedure for solving the layout design problem," Omega, Elsevier, vol. 4(2), pages 205-214.
    3. L. R. Foulds, 1983. "Techniques for Facilities Layout: Deciding which Pairs of Activities Should be Adjacent," Management Science, INFORMS, vol. 29(12), pages 1414-1426, December.
    4. Michael Scriabin & Roger C. Vergin, 1975. "Comparison of Computer Algorithms and Visual Based Methods for Plant Layout," Management Science, INFORMS, vol. 22(2), pages 172-181, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiang, Wen-Chyuan & Chiang, Chi, 1998. "Intelligent local search strategies for solving facility layout problems with the quadratic assignment problem formulation," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 457-488, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    2. Paul D. Dowling & R. F. Love, 1990. "Floor layouts using a multifacility location model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(6), pages 945-952, December.
    3. Mouhamadou A. M. T. Baldé & Serigne Gueye & Babacar M. Ndiaye, 2021. "A greedy evolutionary hybridization algorithm for the optimal network and quadratic assignment problem," Operational Research, Springer, vol. 21(3), pages 1663-1690, September.
    4. Mans, Bernard & Mautor, Thierry & Roucairol, Catherine, 1995. "A parallel depth first search branch and bound algorithm for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 81(3), pages 617-628, March.
    5. Li, Wu-Ji & Smith, J. MacGregor, 1995. "An algorithm for Quadratic Assignment Problems," European Journal of Operational Research, Elsevier, vol. 81(1), pages 205-216, February.
    6. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    7. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    8. Yu, Junfang & Sarker, Bhaba R., 2003. "Directional decomposition heuristic for a linear machine-cell location problem," European Journal of Operational Research, Elsevier, vol. 149(1), pages 142-184, August.
    9. Richárd Molnár-Szipai & Anita Varga, 2019. "Integrating combinatorial algorithms into a linear programming solver," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 475-482, June.
    10. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    11. Stefan Helber & Daniel Böhme & Farid Oucherif & Svenja Lagershausen & Steffen Kasper, 2016. "A hierarchical facility layout planning approach for large and complex hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 5-29, June.
    12. Jerzy Grobelny & Rafał Michalski, 2020. "Effects of scatter plot initial solutions on regular grid facility layout algorithms in typical production models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 601-632, June.
    13. A.J. Scott, 1969. "Combinatorial Programming and the Planning of Urban and Regional Systems," Environment and Planning A, , vol. 1(2), pages 125-142, December.
    14. Sarker, Bhaba R., 2003. "The effect of material flow and workload on the performance of machine location heuristics," European Journal of Operational Research, Elsevier, vol. 148(1), pages 166-191, July.
    15. Zvi Drezner & Peter Hahn & Éeric Taillard, 2005. "Recent Advances for the Quadratic Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic Methods," Annals of Operations Research, Springer, vol. 139(1), pages 65-94, October.
    16. Alexandre Domingues Gonçalves & Artur Alves Pessoa & Cristiana Bentes & Ricardo Farias & Lúcia Maria de A. Drummond, 2017. "A Graphics Processing Unit Algorithm to Solve the Quadratic Assignment Problem Using Level-2 Reformulation-Linearization Technique," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 676-687, November.
    17. Zvi Drezner, 2003. "A New Genetic Algorithm for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 320-330, August.
    18. Jean-Paul Arnaout, 2018. "Worm optimization for the multiple level warehouse layout problem," Annals of Operations Research, Springer, vol. 269(1), pages 29-51, October.
    19. Jean-Paul Arnaout & Caline ElKhoury & Gamze Karayaz, 2020. "Solving the multiple level warehouse layout problem using ant colony optimization," Operational Research, Springer, vol. 20(1), pages 473-490, March.
    20. Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:12:y:1985:i:4:p:443-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.