IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v12y1985i4p443-453.html
   My bibliography  Save this article

Facility Layout Optimization Using the Metropolis Algorithm

Author

Listed:
  • R Sharpe
  • B S Marksjö

Abstract

A radically new approach to facility layout optimization involving nonconvex quadratic assignment problems is presented. The approach uses a simulated annealing technique originally developed to solve problems in statistical mechanics by Metropolis et al, and recently applied to VLSI chip design problems. The Metropolis algorithm is relatively simple to apply and a microcomputer model called TOPMET has been developed. TOPMET is shown to produce superior solutions to some of the more popular computer-planning techniques and hand-generated methods. The algorithm also lends itself readily to user interaction and colour graphics display, and its application is illustrated by a practical building problem. Extensions into artificial intelligence are discussed.

Suggested Citation

  • R Sharpe & B S Marksjö, 1985. "Facility Layout Optimization Using the Metropolis Algorithm," Environment and Planning B, , vol. 12(4), pages 443-453, December.
  • Handle: RePEc:sae:envirb:v:12:y:1985:i:4:p:443-453
    DOI: 10.1068/b120443
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b120443
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b120443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher E. Nugent & Thomas E. Vollmann & John Ruml, 1968. "An Experimental Comparison of Techniques for the Assignment of Facilities to Locations," Operations Research, INFORMS, vol. 16(1), pages 150-173, February.
    2. Hitchings, G. G. & Cottam, M, 1976. "An efficient heuristic procedure for solving the layout design problem," Omega, Elsevier, vol. 4(2), pages 205-214.
    3. L. R. Foulds, 1983. "Techniques for Facilities Layout: Deciding which Pairs of Activities Should be Adjacent," Management Science, INFORMS, vol. 29(12), pages 1414-1426, December.
    4. Michael Scriabin & Roger C. Vergin, 1975. "Comparison of Computer Algorithms and Visual Based Methods for Plant Layout," Management Science, INFORMS, vol. 22(2), pages 172-181, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiang, Wen-Chyuan & Chiang, Chi, 1998. "Intelligent local search strategies for solving facility layout problems with the quadratic assignment problem formulation," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 457-488, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mans, Bernard & Mautor, Thierry & Roucairol, Catherine, 1995. "A parallel depth first search branch and bound algorithm for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 81(3), pages 617-628, March.
    2. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    3. Li, Wu-Ji & Smith, J. MacGregor, 1995. "An algorithm for Quadratic Assignment Problems," European Journal of Operational Research, Elsevier, vol. 81(1), pages 205-216, February.
    4. Paul D. Dowling & R. F. Love, 1990. "Floor layouts using a multifacility location model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(6), pages 945-952, December.
    5. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    6. Mouhamadou A. M. T. Baldé & Serigne Gueye & Babacar M. Ndiaye, 2021. "A greedy evolutionary hybridization algorithm for the optimal network and quadratic assignment problem," Operational Research, Springer, vol. 21(3), pages 1663-1690, September.
    7. Jean-François Cordeau & Manlio Gaudioso & Gilbert Laporte & Luigi Moccia, 2006. "A Memetic Heuristic for the Generalized Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 433-443, November.
    8. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    9. Kazuhiro Tsuchiya & Sunil Bharitkar & Yoshiyasu Takefuji, 1996. "A neural network approach to facility layout problems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 556-563, March.
    10. Yu, Junfang & Sarker, Bhaba R., 2003. "Directional decomposition heuristic for a linear machine-cell location problem," European Journal of Operational Research, Elsevier, vol. 149(1), pages 142-184, August.
    11. L Virirakis, 1993. "The “Continuous Search Space Design Method†(CSSDM)," Environment and Planning B, , vol. 20(6), pages 617-643, December.
    12. Kim, J. -Y. & Kim, Y. -D., 1995. "Graph theoretic heuristics for unequal-sized facility layout problems," Omega, Elsevier, vol. 23(4), pages 391-401, August.
    13. Asef-Vaziri, Ardavan & Kazemi, Morteza & Eshghi, Kourosh & Lahmar, Maher, 2010. "An ant colony system for enhanced loop-based aisle-network design," European Journal of Operational Research, Elsevier, vol. 207(1), pages 110-120, November.
    14. Tian, Peng & Ma, Jian & Zhang, Dong-Mo, 1999. "Application of the simulated annealing algorithm to the combinatorial optimisation problem with permutation property: An investigation of generation mechanism," European Journal of Operational Research, Elsevier, vol. 118(1), pages 81-94, October.
    15. Richárd Molnár-Szipai & Anita Varga, 2019. "Integrating combinatorial algorithms into a linear programming solver," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 475-482, June.
    16. Miguel F. Anjos & Anthony Vannelli, 2006. "A New Mathematical-Programming Framework for Facility-Layout Design," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 111-118, February.
    17. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    18. Miu-ling Rosa, Lee & Feiring, Bruce R., 1995. "Layout problem for an aircraft maintenance company tool room," International Journal of Production Economics, Elsevier, vol. 40(2-3), pages 219-230, August.
    19. Jankovits, Ibolya & Luo, Chaomin & Anjos, Miguel F. & Vannelli, Anthony, 2011. "A convex optimisation framework for the unequal-areas facility layout problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 199-215, October.
    20. Miguel F. Anjos & Anthony Vannelli, 2008. "Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 611-617, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:12:y:1985:i:4:p:443-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.