IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v49y2017i10p2300-2323.html
   My bibliography  Save this article

Trapped in trash: ‘Modes of governing’ and barriers to transitioning to sustainable waste management

Author

Listed:
  • Lily B Pollans

Abstract

The disposal of municipal solid waste can be costly and environmentally destructive. This article asks why, given many alternatives, most waste material is still disposed of in landfills or incinerators. Building upon the ‘modes of governing’ framework proposed by Bulkeley, Watson, and Hudson as a means of identifying and interpreting the relationships among the many actors and artefacts that constitute a municipal solid waste management system, this article explores the barriers to transitioning between modes. The case of solid waste management in Boston, Massachusetts illustrates how key factors – limited enforcement of existing policy, institutional and physical fragmentation, financial incentives, and the vested interests of the private sector – protect the disposal mode of governing. Meanwhile, the actors most interested in moving towards more sustainable waste management techniques lack access to decision-making processes and daily operations, limiting their ability to influence policy and practice. The analysis of barriers suggests an alternative way of classifying modes – dominant, incremental, visionary, and aspirational – that explicitly captures the relative entrenchment of each mode, while also opening up the framework for application in other geographies, and for other systems that may or may not share similar governmental rationalities, technologies, or capacities.

Suggested Citation

  • Lily B Pollans, 2017. "Trapped in trash: ‘Modes of governing’ and barriers to transitioning to sustainable waste management," Environment and Planning A, , vol. 49(10), pages 2300-2323, October.
  • Handle: RePEc:sae:envira:v:49:y:2017:i:10:p:2300-2323
    DOI: 10.1177/0308518X17719461
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0308518X17719461
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0308518X17719461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    2. Shove, Elizabeth & Walker, Gordon, 2010. "Governing transitions in the sustainability of everyday life," Research Policy, Elsevier, vol. 39(4), pages 471-476, May.
    3. Jenkins, Robin R. & Martinez, Salvador A. & Palmer, Karen & Podolsky, Michael J., 2003. "The determinants of household recycling: a material-specific analysis of recycling program features and unit pricing," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 294-318, March.
    4. Harriet Bulkeley & Matt Watson & Ray Hudson, 2007. "Modes of Governing Municipal Waste," Environment and Planning A, , vol. 39(11), pages 2733-2753, November.
    5. Michael F. Maniates, 2001. "Individualization: Plant a Tree, Buy a Bike, Save the World?," Global Environmental Politics, MIT Press, vol. 1(3), pages 31-52, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    2. Nick Eyre, 2013. "Decentralization of governance in the low-carbon transition," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 27, pages 581-597, Edward Elgar Publishing.
    3. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    4. Carrosio, Giovanni & Scotti, Ivano, 2019. "The ‘patchy’ spread of renewables: A socio-territorial perspective on the energy transition process," Energy Policy, Elsevier, vol. 129(C), pages 684-692.
    5. Pesch, Udo, 2015. "Tracing discursive space: Agency and change in sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 379-388.
    6. Harriet Bulkeley & Gareth Powells & Sandra Bell, 2016. "Smart grids and the constitution of solar electricity conduct," Environment and Planning A, , vol. 48(1), pages 7-23, January.
    7. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    8. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    9. Maarten A. Allers & Corine Hoeben, 2010. "Effects of Unit-Based Garbage Pricing: A Differences-in-Differences Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(3), pages 405-428, March.
    10. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    11. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    12. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    13. Monica Santillan Vera & Lilia Garcia Manrique & Isabel Rodriguez Pena & Angel de la Vega Navarro, 2021. "Drivers of Electricity GHG Emissions and the Role of Natural Gas in Mexican Energy Transition," Working Paper Series 1021, Department of Economics, University of Sussex Business School.
    14. Acuff, Kaylee & Kaffine, Daniel T., 2013. "Greenhouse gas emissions, waste and recycling policy," Journal of Environmental Economics and Management, Elsevier, vol. 65(1), pages 74-86.
    15. Marzieh Ronaghi & Michael Reed & Sayed Saghaian, 2020. "The impact of economic factors and governance on greenhouse gas emission," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 153-172, April.
    16. Niklas Harring & Sverker C. Jagers, 2013. "Should We Trust in Values? Explaining Public Support for Pro-Environmental Taxes," Sustainability, MDPI, vol. 5(1), pages 1-18, January.
    17. Tiia-Lotta Pekkanen, 2021. "Institutions and Agency in the Sustainability of Day-to-Day Consumption Practices: An Institutional Ethnographic Study," Journal of Business Ethics, Springer, vol. 168(2), pages 241-260, January.
    18. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    19. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
    20. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:49:y:2017:i:10:p:2300-2323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.