IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v35y2003i5p931-946.html
   My bibliography  Save this article

Modelling a Single Type of Environmental Impact from an Obnoxious Transport Activity: Implementing Locational Analysis with GIS

Author

Listed:
  • Antonio Moreno-Jiménez

    (Department of Geography, Autonomous University of Madrid, Cantoblanco, 28049-Madrid, Spain)

  • Robert Lindsay Hodgart

    (Department of Geography, The University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, Scotland)

Abstract

Many facilities have negative impacts on neighbouring areas, and an obvious social and political concern is therefore to assess and minimise such impacts. The authors address this type of problem in relation to the dispersion of aircraft noise near airports. The approach involved brings together two basic components. First, two spatial models are presented. These are developed from existing concepts in location theory and modelling, but the authors attempt to overcome some of the limitations of previous models. Second, a geographical information system is used to obtain a better representation of the spatiotemporal processes involved in the dispersion of aircraft noise and to evaluate the functions of the two models. A case study is used to illustrate the methodology and helps to indicate how this approach could facilitate improved spatial decisionmaking.

Suggested Citation

  • Antonio Moreno-Jiménez & Robert Lindsay Hodgart, 2003. "Modelling a Single Type of Environmental Impact from an Obnoxious Transport Activity: Implementing Locational Analysis with GIS," Environment and Planning A, , vol. 35(5), pages 931-946, May.
  • Handle: RePEc:sae:envira:v:35:y:2003:i:5:p:931-946
    DOI: 10.1068/a35164
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a35164
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a35164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. I. Douglas Moon & Sohail S. Chaudhry, 1984. "An Analysis of Network Location Problems with Distance Constraints," Management Science, INFORMS, vol. 30(3), pages 290-307, March.
    2. Karkazis, John & Papadimitriou, Costas, 1992. "A branch-and-bound algorithm for the location of facilities causing atmospheric pollution," European Journal of Operational Research, Elsevier, vol. 58(3), pages 363-373, May.
    3. Alan T. Murray & Richard L. Church & Ross A. Gerrard & Wing‐Sing Tsui, 1998. "Impact Models For Siting Undesirable Facilities," Papers in Regional Science, Wiley Blackwell, vol. 77(1), pages 19-36, January.
    4. Fernandez, J. & Fernandez, P. & Pelegrin, B., 2000. "A continuous location model for siting a non-noxious undesirable facility within a geographical region," European Journal of Operational Research, Elsevier, vol. 121(2), pages 259-274, March.
    5. Erhan Erkut & Armann Ingolfsson, 2000. "Catastrophe Avoidance Models for Hazardous Materials Route Planning," Transportation Science, INFORMS, vol. 34(2), pages 165-179, May.
    6. G. Scott Mills & K. Sieglinde Neuhauser, 2000. "Quantitative Methods for Environmental Justice Assessment of Transportation," Risk Analysis, John Wiley & Sons, vol. 20(3), pages 377-384, June.
    7. George List & Pitu Mirchandani, 1991. "An Integrated Network/Planar Multiobjective Model for Routing and Siting for Hazardous Materials and Wastes," Transportation Science, INFORMS, vol. 25(2), pages 146-156, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    2. Liping Liu & Jiaming Li & Lei Zhou & Tijun Fan & Shuxia Li, 2021. "Research on Route Optimization of Hazardous Materials Transportation Considering Risk Equity," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    3. Welch, S. B. & Salhi, S., 1997. "The obnoxious p facility network location problem with facility interaction," European Journal of Operational Research, Elsevier, vol. 102(2), pages 302-319, October.
    4. Rongrong Li & Yee Leung, 2011. "Multi-objective route planning for dangerous goods using compromise programming," Journal of Geographical Systems, Springer, vol. 13(3), pages 249-271, September.
    5. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2015. "The maximin HAZMAT routing problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 15-27.
    6. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2016. "The maxisum and maximin-maxisum HAZMAT routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 316-333.
    7. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    8. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    9. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    10. Rahman, Ashrafur & Fiondella, Lance & Lownes, Nicholas E., 2014. "A Bi-Objective Approach to Evaluate Highway Routing and Regulatory Strategies for Hazardous Materials Transportation," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(1).
    11. Amirsaman Kheirkhah & HamidReza Navidi & Masume Messi Bidgoli, 2016. "A bi-level network interdiction model for solving the hazmat routing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 459-471, January.
    12. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    13. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    14. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    15. Hosseini, S. Davod & Verma, Manish, 2018. "Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 79-103.
    16. Zhang, Lukai & Feng, Xuesong & Chen, Dalin & Zhu, Nan & Liu, Yi, 2019. "Designing a hazardous materials transportation network by a bi-level programming based on toll policies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    18. Pablo Adasme & Ali Dehghan Firoozabadi, 2019. "Facility Location with Tree Topology and Radial Distance Constraints," Complexity, Hindawi, vol. 2019, pages 1-29, November.
    19. Erkut, E. & ReVelle, C. & Ulkusal, Y., 1996. "Integer-friendly formulations for the r-separation problem," European Journal of Operational Research, Elsevier, vol. 92(2), pages 342-351, July.
    20. Misagh Rahbari & Alireza Arshadi Khamseh & Yaser Sadati-Keneti & Mohammad Javad Jafari, 2022. "A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA, and multi-objective black widow optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2804-2840, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:35:y:2003:i:5:p:931-946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.