IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i4p809-825.html
   My bibliography  Save this article

Alternative pathways to CO2 reduction in Gansu province, China

Author

Listed:
  • Guokui Wang
  • Xiaojia Guo
  • Jinxiu Fu
  • Qingyue Wei
  • Linlin Zhang

Abstract

Climate change has been considerable concerned because of the increasing greenhouse gas (GHG) emissions. Gansu province is a typical less-developed and heavy chemical industrial province, its CO 2 emission per unit of the gross domestic product (GDP) is 252.52 ton per million Chinese yuan (t/M-CNY) in 2019, which is 48.42% more than national average value. Gansu province faces the following dual pressures including maintaining economic growth and reducing carbon dioxide (CO 2 ) emissions. This paper establishes a low carbon development system dynamics model in order to investigate the effects of four carbon reduction measures (technical progress, industrial transformation, fuel substitution, and low carbon awareness) on reducing CO 2 emission over the period of 2020–2030. The simulation results indicate that, without direct intervention, the CO 2 emissions per unit of GDP is projected to be 171.34 t/M-CNY by 2030. While utilizing technical progress, implementing industrial transformation, fuel substitution, and low carbon awareness could potentially be 2.12%, 3.33%, 0.72% and 1.27%, respectively less than that. For the sake of achieving the goal of CO 2 reduction in the long run, the local government should address today’s industrial transformation and adopt reasonable combination of adjustment and control policies immediately.

Suggested Citation

  • Guokui Wang & Xiaojia Guo & Jinxiu Fu & Qingyue Wei & Linlin Zhang, 2022. "Alternative pathways to CO2 reduction in Gansu province, China," Energy & Environment, , vol. 33(4), pages 809-825, June.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:4:p:809-825
    DOI: 10.1177/0958305X211023182
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211023182
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211023182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
    2. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    3. Ramin Khochiani & Younes Nademi, 2020. "Energy consumption, CO2 emissions, and economic growth in the United States, China, and India: A wavelet coherence approach," Energy & Environment, , vol. 31(5), pages 886-902, August.
    4. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.
    5. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.
    6. Foumani, Mehdi & Smith-Miles, Kate, 2019. "The impact of various carbon reduction policies on green flowshop scheduling," Applied Energy, Elsevier, vol. 249(C), pages 300-315.
    7. Muhammad, Bashir, 2019. "Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries," Energy, Elsevier, vol. 179(C), pages 232-245.
    8. Min Su & Shasha Wang & Rongrong Li & Ningning Guo, 2020. "Decomposition analysis of the decoupling process between economic growth and carbon emission in Beijing city, China: A sectoral perspective," Energy & Environment, , vol. 31(6), pages 961-982, September.
    9. Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, vol. 9(12), pages 1-18, December.
    10. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.
    11. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    12. Simoes, Sofia & Nijs, Wouter & Ruiz, Pablo & Sgobbi, Alessandra & Thiel, Christian, 2017. "Comparing policy routes for low-carbon power technology deployment in EU – an energy system analysis," Energy Policy, Elsevier, vol. 101(C), pages 353-365.
    13. Liu, Xianbing & Fan, Yongbin & Wang, Can, 2017. "An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry," Applied Energy, Elsevier, vol. 185(P1), pages 671-686.
    14. Gorus, Muhammed Sehid & Aydin, Mucahit, 2019. "The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain," Energy, Elsevier, vol. 168(C), pages 815-822.
    15. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ling & Li, Xiaofan & Cui, Qi & Guan, Bing & Li, Meng & Chen, Hao, 2024. "Decarbonization pathways to subregional carbon neutrality in China based on the top-down multi-regional CGE model: A study of Guangxi," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chimere O. Iheonu & Ogochukwu C. Anyanwu & Obinna K. Odo & Solomon Prince Nathaniel, 2021. "Does Economic Growth, International Trade and Urbanization uphold Environmental Sustainability in sub-Saharan Africa? Insights from Quantile and Causality Procedures," Working Papers 21/003, European Xtramile Centre of African Studies (EXCAS).
    2. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    3. Chimere O. Iheonu & Ogochukwu C. Anyanwu & Obinna K. Odo & Solomon Prince Nathaniel, 2021. "Does Economic Growth, International Trade and Urbanization uphold Environmental Sustainability in sub-Saharan Africa? Insights from Quantile and Causality Procedures," Working Papers of the African Governance and Development Institute. 21/003, African Governance and Development Institute..
    4. Charifa Haouraji & Badia Mounir & Ilham Mounir & Abdelmajid Farchi, 2021. "Exploring the Relationship between Residential CO 2 Emissions, Urbanization, Economic Growth, and Residential Energy Consumption: Evidence from the North Africa Region," Energies, MDPI, vol. 14(18), pages 1-19, September.
    5. Zhang, Wenwen & Chiu, Yi-Bin, 2020. "Do country risks influence carbon dioxide emissions? A non-linear perspective," Energy, Elsevier, vol. 206(C).
    6. Liu, Hong & Wang, Chang & Wen, Fenghua, 2020. "Asymmetric transfer effects among real output, energy consumption, and carbon emissions in China," Energy, Elsevier, vol. 208(C).
    7. Miar & Sunaryo Neneng & Jeky Melkianus Sui, 2022. "The Impact Covid-19 Outbreak, Green Finance, Creativity and Sustainable Economic Development on the Economic Recovery in G20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 432-440, November.
    8. Bastida-Molina, Paula & Hurtado-Pérez, Elías & Moros Gómez, María Cristina & Cárcel-Carrasco, Javier & Pérez-Navarro, Ángel, 2022. "Energy sustainability evolution in the Mediterranean countries and synergies from a global energy scenario for the area," Energy, Elsevier, vol. 252(C).
    9. Chuimin Kong & Jijian Zhang & Albert Henry Ntarmah & Yusheng Kong & Hong Zhao, 2022. "Carbon Neutrality in the Middle East and North Africa: The Roles of Renewable Energy, Economic Growth, and Government Effectiveness," IJERPH, MDPI, vol. 19(17), pages 1-24, August.
    10. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Eldowma, Ibrahim Ahmed & Zhang, Guoxing & Su, Bin, 2023. "The nexus between electricity consumption, carbon dioxide emissions, and economic growth in Sudan (1971–2019)," Energy Policy, Elsevier, vol. 176(C).
    12. Shahzad, Umer & Doğan, Buhari & Sinha, Avik & Fareed, Zeeshan, 2021. "Does Export product diversification help to reduce energy demand: Exploring the contextual evidences from the newly industrialized countries," Energy, Elsevier, vol. 214(C).
    13. Adekoya, Oluwasegun B., 2021. "Revisiting oil consumption-economic growth nexus: Resource-curse and scarcity tales," Resources Policy, Elsevier, vol. 70(C).
    14. Assad Ullah & Murat Tekbaş & Mesut Doğan, 2023. "The Impact of Economic Growth, Natural Resources, Urbanization and Biocapacity on the Ecological Footprint: The Case of Turkey," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    15. Waheed Ahmad & Sana Ullah & Ilhan Ozturk & Muhammad Tariq Majeed, 2021. "Does inflation instability affect environmental pollution? Fresh evidence from Asian economies," Energy & Environment, , vol. 32(7), pages 1275-1291, November.
    16. Mahmood, Haider & Alkhateeb, Tarek Tawfik Yousef & Al-Qahtani, Maleeha Mohammed Zaaf & Allam, Zafrul Allam & Ahmad, Nawaz & Furqan, Maham, 2019. "Energy consumption, economic growth and pollution in Saudi Arabia," MPRA Paper 109143, University Library of Munich, Germany.
    17. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Jamiu Adetola Odugbesan & Gbenga Daniel Akinsola & Wing-Keung Wong & Husam Rjoub, 2021. "Sustainability of Energy-Induced Growth Nexus in Brazil: Do Carbon Emissions and Urbanization Matter?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    18. Adedoyin Isola Lawal, 2023. "The Nexus between Economic Growth, Energy Consumption, Agricultural Output, and CO 2 in Africa: Evidence from Frequency Domain Estimates," Energies, MDPI, vol. 16(3), pages 1-27, January.
    19. Najia Saqib, 2021. "Energy Consumption and Economic Growth: Empirical Evidence from MENA Region," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 191-197.
    20. Buket Altinoz & Nicholas Apergis & Alper Aslan, 2021. "Energy Consumption, Carbon Dioxide Emissions and Economic Growth - Fresh Evidence From Panel Quantile Regressions," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:4:p:809-825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.