IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i4p640-662.html
   My bibliography  Save this article

Does a carbon emissions trading scheme spur urban green innovation? Evidence from a quasi-natural experiment in China

Author

Listed:
  • Chao Li
  • Xiangyou Li
  • Deyong Song
  • Meng Tian

Abstract

Based on the panel data of 277 cities between 2003 and 2017 and a unique city-level dataset of green patent applications, this study employs the difference-in-differences (DID) method to evaluate the effect of China’s carbon emission trading scheme (ETS) pilots on urban green innovation. The findings indicate that China’s ETS pilots have a positive impact on urban green innovation, and that impact is more significant for municipalities than for prefecture-level cities. Furthermore, the impact on different categories of urban green innovation is heterogeneous. More specifically, China’s ETS pilots have significantly spurred urban green innovation that is closely related to energy conservation and emission reduction, including alternative energy production, transportation, energy conservation and so forth. Moreover, the facilitating effect of China’s ETS pilots on urban green innovation suffers from a lagging effect, which began to show a significant positive effect in 2016. Overall, this paper identifies the effect of China’s ETS pilots on urban green innovation, and suggests that the government should consider the heterogeneity of urban green innovation when designing national ETS policies.

Suggested Citation

  • Chao Li & Xiangyou Li & Deyong Song & Meng Tian, 2022. "Does a carbon emissions trading scheme spur urban green innovation? Evidence from a quasi-natural experiment in China," Energy & Environment, , vol. 33(4), pages 640-662, June.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:4:p:640-662
    DOI: 10.1177/0958305X211015327
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211015327
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211015327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacobson, Louis S & LaLonde, Robert J & Sullivan, Daniel G, 1993. "Earnings Losses of Displaced Workers," American Economic Review, American Economic Association, vol. 83(4), pages 685-709, September.
    2. Louis S. Jacobson & Robert J. LaLonde & Daniel G. Sullivan, 1993. "Long-term earnings losses of high-seniority displaced workers," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 17(Nov), pages 2-20.
    3. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    4. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    5. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    6. Teixidó, Jordi & Verde, Stefano F. & Nicolli, Francesco, 2019. "The impact of the EU Emissions Trading System on low-carbon technological change: The empirical evidence," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    7. Yue‐Jun Zhang & Wei Shi & Lin Jiang, 2020. "Does China's carbon emissions trading policy improve the technology innovation of relevant enterprises?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 872-885, March.
    8. Fujii, Hidemichi & Managi, Shunsuke, 2019. "Decomposition analysis of sustainable green technology inventions in China," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 10-16.
    9. Mohan, Gretta & Longo, Alberto & Kee, Frank, 2018. "The effect of area based urban regeneration policies on fuel poverty: Evidence from a natural experiment in Northern Ireland," Energy Policy, Elsevier, vol. 114(C), pages 609-618.
    10. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    11. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    12. Klaus Rennings & Christian Rammer, 2011. "The Impact of Regulation-Driven Environmental Innovation on Innovation Success and Firm Performance," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 255-283.
    13. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
    14. Meyer, Bruce D, 1995. "Natural and Quasi-experiments in Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 151-161, April.
    15. John (Jianqiu) Bai & Daniel Carvalho & Gordon M. Phillips, 2018. "The Impact of Bank Credit on Labor Reallocation and Aggregate Industry Productivity," Journal of Finance, American Finance Association, vol. 73(6), pages 2787-2836, December.
    16. Denis Cormier & Michel Magnan, 2015. "The Economic Relevance of Environmental Disclosure and its Impact on Corporate Legitimacy: An Empirical Investigation," Business Strategy and the Environment, Wiley Blackwell, vol. 24(6), pages 431-450, September.
    17. Wang, Jue, 2018. "Innovation and government intervention: A comparison of Singapore and Hong Kong," Research Policy, Elsevier, vol. 47(2), pages 399-412.
    18. Kesidou, Effie & Wu, Lichao, 2020. "Stringency of environmental regulation and eco-innovation: Evidence from the eleventh Five-Year Plan and green patents," Economics Letters, Elsevier, vol. 190(C).
    19. Junming Zhu & Yichun Fan & Xinghua Deng & Lan Xue, 2019. "Low-carbon innovation induced by emissions trading in China," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    20. Rogge, Karoline S. & Hoffmann, Volker H., 2010. "The impact of the EU ETS on the sectoral innovation system for power generation technologies - Findings for Germany," Energy Policy, Elsevier, vol. 38(12), pages 7639-7652, December.
    21. Chen, Jian & Wang, Lingjun & Li, Yuanyuan, 2020. "Natural resources, urbanization and regional innovation capabilities," Resources Policy, Elsevier, vol. 66(C).
    22. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    23. Liu, Jingjing & Zhao, Min & Wang, Yanbo, 2020. "Impacts of government subsidies and environmental regulations on green process innovation: A nonlinear approach," Technology in Society, Elsevier, vol. 63(C).
    24. Chen Feng & Beibei Shi & Rong Kang, 2017. "Does Environmental Policy Reduce Enterprise Innovation?—Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-24, May.
    25. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    26. Broberg, Thomas & Egüez, Alejandro & Kažukauskas, Andrius, 2019. "Effects of energy performance certificates on investment: A quasi-natural experiment approach," Energy Economics, Elsevier, vol. 84(C).
    27. Richard G. Newell, 2010. "The role of markets and policies in delivering innovation for climate change mitigation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 253-269, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Ruipeng & Cai, Qijun & Pan, Lulu, 2024. "Faking for fortune: Emissions trading schemes and corporate greenwashing in China," Energy Economics, Elsevier, vol. 130(C).
    2. Xie, Peijun & Jamaani, Fouad, 2022. "Does green innovation, energy productivity and environmental taxes limit carbon emissions in developed economies: Implications for sustainable development," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 66-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    2. Xu, Le & Yang, Lili & Li, Ding & Shao, Shuai, 2023. "Asymmetric effects of heterogeneous environmental standards on green technology innovation: Evidence from China," Energy Economics, Elsevier, vol. 117(C).
    3. Yan, Zheming & Yu, Ying & Du, Kerui & Zhang, Ning, 2024. "How does environmental regulation promote green technology innovation? Evidence from China's total emission control policy," Ecological Economics, Elsevier, vol. 219(C).
    4. Tian, Yanping & Song, Wenjing & Liu, Min, 2021. "Assessment of how environmental policy affects urban innovation: Evidence from China’s low-carbon pilot cities program," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 41-56.
    5. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    6. Xiaoqi Li & Dingfei Guo & Chao Feng, 2022. "The Carbon Emissions Trading Policy of China: Does It Really Promote the Enterprises’ Green Technology Innovations?," IJERPH, MDPI, vol. 19(21), pages 1-15, November.
    7. Chu, Baoju & Dong, Yizhe & Liu, Yaorong & Ma, Diandian & Wang, Tianju, 2024. "Does China's emission trading scheme affect corporate financial performance: Evidence from a quasi-natural experiment," Economic Modelling, Elsevier, vol. 132(C).
    8. Liu, Cenjie & Fang, Jiayu & Xie, Rui, 2021. "Energy policy and corporate financial performance: Evidence from China's 11th five-year plan," Energy Economics, Elsevier, vol. 93(C).
    9. Du, Mengfan & Zhang, Yue-Jun, 2023. "The impact of producer services agglomeration on green economic development: Evidence from 278 Chinese cities," Energy Economics, Elsevier, vol. 124(C).
    10. Li, Kai & Qi, Shouzhou & Shi, Xunpeng, 2023. "Environmental policies and low-carbon industrial upgrading: Heterogenous effects among policies, sectors, and technologies in China," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    11. Mandaroux, Rahel & Schindelhauer, Kai & Basse Mama, Houdou, 2023. "How to reinforce the effectiveness of the EU emissions trading system in stimulating low-carbon technological change? Taking stock and future directions," Energy Policy, Elsevier, vol. 181(C).
    12. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61.
    13. Xinghua Wang & Shunchen Wu & Xiaojuan Qin & Meixiang La & Haixia Zuo, 2022. "Informal Environment Regulation, Green Technology Innovation and Air Pollution: Quasi-Natural Experiments from Prefectural Cities in China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    14. Liu, Yunqiang & Liu, Sha & Shao, Xiaoyu & He, Yanqiu, 2022. "Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China's carbon emissions trading policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. LU Guanyu & TANAKA Kenta & ARIMURA Toshi H., 2023. "The Impacts of the Tokyo and Saitama ETSs on the Energy Efficiency Performance of Manufacturing Facilities," Discussion papers 23007, Research Institute of Economy, Trade and Industry (RIETI).
    16. Li, Changsheng & Qi, Yaping & Liu, Shaohui & Wang, Xu, 2022. "Do carbon ETS pilots improve cities' green total factor productivity? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 108(C).
    17. Yuanyang Wang & Yanlin Yang & Chenyu Fu & Zengzeng Fan & Xiaoping Zhou, 2021. "Environmental regulation, environmental responsibility, and green technology innovation: Empirical research from China," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-21, September.
    18. Liu, Menghe & Li, Yuxiao, 2022. "Environmental regulation and green innovation: Evidence from China's carbon emissions trading policy," Finance Research Letters, Elsevier, vol. 48(C).
    19. Sun, Chuanwang & Zhan, Yanhong & Du, Gang, 2020. "Can value-added tax incentives of new energy industry increase firm's profitability? Evidence from financial data of China's listed companies," Energy Economics, Elsevier, vol. 86(C).
    20. Zhice Cheng & Xinyuan Chen & Huwei Wen, 2022. "How Does Environmental Protection Tax Affect Corporate Environmental Investment? Evidence from Chinese Listed Enterprises," Sustainability, MDPI, vol. 14(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:4:p:640-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.