IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032183.html
   My bibliography  Save this article

Quantitative simulation and validation of energy carbon emission efficiency changes in Chinese urban agglomerations

Author

Listed:
  • Zeng, Peng
  • Tang, HaiYing
  • Wei, Xu

Abstract

In the context of the global energy dilemma, enhancing energy efficiency has inevitably become a pivotal strategy for mitigating energy waste and promoting sustainable development. Urban agglomerations, as growth poles leading high-quality regional economic development, play a significant role in this process. Within these urban agglomerations, the aggregation of various factors and the substitution of energy resources substantially influence the energy carbon emission efficiency (ECEE) of surrounding cities during their development and maturation phases. This study initially employs a three-stage Data Envelopment Analysis (DEA) to quantitatively analyze the ECEE values of 19 urban agglomerations from 2006 to 2020. It then establishes a methodology for calculating the joint intensity (JI) and joint threshold (JT) of ECEE within these urban agglomerations. Finally, a validation process is executed using MATLAB simulation and verification methodology to fit and authenticate the evolutionary patterns of ECEE in Chinese urban agglomerations. The primary objective of this research is to model the evolution of ECEE, thereby exploring the sustainable development pathways for urban agglomerations in China. The research findings indicate that: (1) The results from the three-stage DEA demonstrate that, after removing the influences of external environmental factors and random errors, the comprehensive technical efficiency (TE) of energy carbon emissions for the 19 urban agglomerations in China experienced a wave-like increase, rising from 0.410 to 0.506 between 2006 and 2020. (2) The calculation results of the constructed JI model indicate that the JT values of ECEE for national-level, regional-level, and local-level urban agglomerations are 1006.92, 226.60, and 160.14, respectively. The national-level urban agglomerations have significantly higher JT values and JI than the other two levels of urban agglomerations. (3) The results of the Matlab simulation verification show that 16 urban agglomerations fit well with the wave-like ascending evolutionary pattern. However, four urban agglomerations exhibit an opposite fitting effect due to the influence of their pillar industries or the small number of cities within these accumulations, making them unrepresentative. Consequently, the evolutionary curve of ECEE in Chinese urban agglomerations generally exhibits a wave-like upward trend over time.

Suggested Citation

  • Zeng, Peng & Tang, HaiYing & Wei, Xu, 2024. "Quantitative simulation and validation of energy carbon emission efficiency changes in Chinese urban agglomerations," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032183
    DOI: 10.1016/j.energy.2024.133442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.