IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v31y2020i4p613-633.html
   My bibliography  Save this article

Mind the gap when implementing technologies intended to reduce or shift energy consumption in blocks-of-buildings

Author

Listed:
  • Sylvia Breukers
  • Tracey Crosbie
  • Luc van Summeren

Abstract

If the designers of technologies intended to reduce or shift energy consumption are not sensitive to how people live and work in buildings, a gap occurs between the expected and actual performance of those technologies. This paper explores this problem using the concepts of ‘design logic’ (designers’ ideas, values, intentions and user representations) and the ‘user logic’ (related in this case to how building occupants currently live and work in a building). The research presented unpacks the ‘design logic’ embedded in DR approaches planned for implementation at four blocks of buildings in a Horizon 2020 funded project, called “Demand Response in Blocks of Buildings†(DR-BoB). It discusses how the ‘user logic’ may differ from the ‘design logic’ and the potential impact of this on the performance of the technologies being implemented to reduce or shift energy consumption. The data analysed includes technical working documents describing the implementation scenarios of DR at four pilot sites, interviews and workshops conducted with the project team and building occupants during the first phases of the project. The analysis presented identifies how expectations about building occupants and their behaviours are built into the DR scenarios (to be tested during the project demonstrations). Initial findings suggest that building occupants’ energy use practices and routines may be different from those expectations. The paper illustrates how the concepts of ‘design logic’ and ‘user logic’ can be used to identify mismatches before technologies are implemented. The paper concludes with recommendations for improving the design and implementation of DR.

Suggested Citation

  • Sylvia Breukers & Tracey Crosbie & Luc van Summeren, 2020. "Mind the gap when implementing technologies intended to reduce or shift energy consumption in blocks-of-buildings," Energy & Environment, , vol. 31(4), pages 613-633, June.
  • Handle: RePEc:sae:engenv:v:31:y:2020:i:4:p:613-633
    DOI: 10.1177/0958305X19881361
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X19881361
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X19881361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tracey Crosbie & Michael Short & Muneeb Dawood & Richard Charlesworth, 2017. "Demand response in blocks of buildings: opportunities and requirements," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 4(3), pages 271-281, March.
    2. Goulden, Murray & Spence, Alexa & Wardman, Jamie & Leygue, Caroline, 2018. "Differentiating ‘the user’ in DSR: Developing demand side response in advanced economies," Energy Policy, Elsevier, vol. 122(C), pages 176-185.
    3. Sütterlin, Bernadette & Brunner, Thomas A. & Siegrist, Michael, 2011. "Who puts the most energy into energy conservation? A segmentation of energy consumers based on energy-related behavioral characteristics," Energy Policy, Elsevier, vol. 39(12), pages 8137-8152.
    4. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Williams & Michael Short & Tracey Crosbie & Maryam Shadman-Pajouh, 2020. "A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services," Energies, MDPI, vol. 13(16), pages 1-30, August.
    2. Dana Abi Ghanem & Tracey Crosbie, 2021. "The Transition to Clean Energy: Are People Living in Island Communities Ready for Smart Grids and Demand Response?," Energies, MDPI, vol. 14(19), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Mataloto & Daniel Calé & Kaiser Carimo & Joao C. Ferreira & Ricardo Resende, 2021. "3D IoT System for Environmental and Energy Consumption Monitoring System," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    3. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    4. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    5. Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
    6. Belaïd, Fateh & Joumni, Haitham, 2020. "Behavioral attitudes towards energy saving: Empirical evidence from France," Energy Policy, Elsevier, vol. 140(C).
    7. Codruţa Mare & Simona Laura Dragoş & Dan Tudor Lazăr & Cristian Mihai Dragoş, 2013. "Consumer protection through prices: an analysis of the energetic sector in European Union countries," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 15(34), pages 327-341, June.
    8. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    9. Yunusov, Timur & Torriti, Jacopo, 2021. "Distributional effects of Time of Use tariffs based on electricity demand and time use," Energy Policy, Elsevier, vol. 156(C).
    10. Joachim P. Hasebrook & Leonie Michalak & Anna Wessels & Sabine Koenig & Stefan Spierling & Stefan Kirmsse, 2022. "Green Behavior: Factors Influencing Behavioral Intention and Actual Environmental Behavior of Employees in the Financial Service Sector," Sustainability, MDPI, vol. 14(17), pages 1-35, August.
    11. Nieves García-de-Frutos & José Manuel Ortega-Egea & Javier Martínez-del-Río, 2018. "Anti-consumption for Environmental Sustainability: Conceptualization, Review, and Multilevel Research Directions," Journal of Business Ethics, Springer, vol. 148(2), pages 411-435, March.
    12. Luciano Cavalcante Siebert & Alexandre Rasi Aoki & Germano Lambert-Torres & Nelson Lambert-de-Andrade & Nikolaos G. Paterakis, 2020. "An Agent-Based Approach for the Planning of Distribution Grids as a Socio-Technical System," Energies, MDPI, vol. 13(18), pages 1-13, September.
    13. Lydia Chu, 2023. "Why Do Consumers Buy Green Smart Buildings without Engaging in Energy-Saving Behaviors in the Workplace? The Perspective of Materialistic Value," Sustainability, MDPI, vol. 15(12), pages 1-9, June.
    14. Virkki-Hatakka, Terhi & Luoranen, Mika & Ikävalko, Markku, 2013. "Differences in perception: How the experts look at energy efficiency (findings from a Finnish survey)," Energy Policy, Elsevier, vol. 60(C), pages 499-508.
    15. Sila Kiliccote & Daniel Olsen & Michael D. Sohn & Mary Ann Piette, 2016. "Characterization of demand response in the commercial, industrial, and residential sectors in the United States," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 288-304, May.
    16. Robert Cruickshank & Gregor Henze & Rajagopalan Balaji & Bri-Mathias Hodge & Anthony Florita, 2019. "Quantifying the Opportunity Limits of Automatic Residential Electric Load Shaping," Energies, MDPI, vol. 12(17), pages 1-19, August.
    17. Lin, Boqiang & Okyere, Michael Adu, 2023. "Race and energy poverty: The moderating role of subsidies in South Africa," Energy Economics, Elsevier, vol. 117(C).
    18. Osunmuyiwa, Olufolahan O. & Peacock, Andrew D. & Payne, Sarah R. & Vigneswara Ilavarasan, P. & Jenkins, David P., 2021. "Divergent imaginaries? Co-producing practitioner and householder perspective to cooling demand response in India," Energy Policy, Elsevier, vol. 152(C).
    19. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Energy-Related Behaviour of Consumers from the Silesia Province (Poland)—Towards a Low-Carbon Economy," Energies, MDPI, vol. 14(8), pages 1-23, April.
    20. Michael Short & Sergio Rodriguez & Richard Charlesworth & Tracey Crosbie & Nashwan Dawood, 2019. "Optimal Dispatch of Aggregated HVAC Units for Demand Response: An Industry 4.0 Approach," Energies, MDPI, vol. 12(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:31:y:2020:i:4:p:613-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.