IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v30y2019i6p1049-1064.html
   My bibliography  Save this article

Multi-objective evaluation of aviation-induced GHG emissions: UK domestic flight pattern

Author

Listed:
  • Yasin Şöhret

Abstract

Energy demand associated with energy consumption (commonly fossil fuels) has increased in line with the rise in world population and this has led to a number of complications. The best known and most prominent issue induced by fossil fuel utilization is unavoidable greenhouse gas emissions released as a result of the combustion of fuels. Emitted greenhouse gases from various sources, such as industrial plants, power plants, transportation services, residential utilization and so on, are largely responsible for global warming and climate change. According to latest reports, the share of the transportation sector in total energy-related CO 2 emissions is approximately 23%. As a result of a detailed investigation and dissemination of transportation-induced emissions, air transportation is found to be responsible for approximately 3–4% of total energy-related CO 2 emissions. The current study introduces a different perspective in the evaluation of aircraft greenhouse gas emissions. In this manner, a thermodynamic evaluation on the basis of the first and second laws of thermodynamics and a cost evaluation of greenhouse gases emitted from domestic flights in the UK are presented in the current paper, in addition to an environmental impact assessment.

Suggested Citation

  • Yasin Şöhret, 2019. "Multi-objective evaluation of aviation-induced GHG emissions: UK domestic flight pattern," Energy & Environment, , vol. 30(6), pages 1049-1064, September.
  • Handle: RePEc:sae:engenv:v:30:y:2019:i:6:p:1049-1064
    DOI: 10.1177/0958305X18802778
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18802778
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18802778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    2. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    3. Alonso, G. & Benito, A. & Lonza, L. & Kousoulidou, M., 2014. "Investigations on the distribution of air transport traffic and CO2 emissions within the European Union," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 85-93.
    4. González, Rodrigo & Hosoda, Eiji B., 2016. "Environmental impact of aircraft emissions and aviation fuel tax in Japan," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 234-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talwar, Chetan & Joormann, Imke & Ginster, Raphael & Spengler, Thomas Stefan, 2023. "How much can electric aircraft contribute to reaching the Flightpath 2050 CO2 emissions goal? A system dynamics approach for european short haul flights," Journal of Air Transport Management, Elsevier, vol. 112(C).
    2. Pedro Dorta Antequera & Jaime Díaz Pacheco & Abel López Díez & Celia Bethencourt Herrera, 2021. "Tourism, Transport and Climate Change: The Carbon Footprint of International Air Traffic on Islands," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    3. Chaisri Tarasawatpipat & Thammarak Srimarut & Witthaya Mekhum, 2020. "Seeing Domestic and Industrial Logistic in Context of CO2 Emission: Role of Container Port Traffic, Railway Transport, and Air Transport Intensity in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 570-576.
    4. Wu, Chuntao & He, Xiaohe & Dou, Yi, 2019. "Regional disparity and driving forces of CO2 emissions: Evidence from China's domestic aviation transport sector," Journal of Transport Geography, Elsevier, vol. 76(C), pages 71-82.
    5. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    7. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    8. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    9. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    10. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    11. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    12. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    13. Jing Han Siow & Muhammad Roil Bilad & Wahyu Caesarendra & Jia Jia Leam & Mohammad Azmi Bustam & Nonni Soraya Sambudi & Yusuf Wibisono & Teuku Meurah Indra Mahlia, 2021. "Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction," Energies, MDPI, vol. 14(19), pages 1-16, October.
    14. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    15. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    16. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    17. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    18. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    19. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    20. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:30:y:2019:i:6:p:1049-1064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.