IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v29y2018i7p1247-1262.html
   My bibliography  Save this article

Methane emissions from the Algerian natural gas pipelines transportation: Exploring process to reduce environmental consequences

Author

Listed:
  • Mounia Louhibi–Bouiri
  • Messaoud Hachemi

Abstract

The global environmental community recognizes global warming as one of the major serious threats to the planet. The emissions of methane from natural gas transportation pipeline are an important factor for global warming. While being transported by pipeline, natural gas is often emitted to the atmosphere, either for depressurization (venting emissions) or leak through the pipeline (fugitive emission). Emissions of methane are of particular concern since the methane represents the major component of natural gas and a powerful greenhouse gas. The present study investigates the feasibility of gas venting mitigation, from the Algerian natural gas transportation network with pipeline pump-down technique, prior pipeline maintenance activities. First, we calculate the amount of methane released during venting operation from GZ3 40″ pipeline based on the weighted average pipe diameter and pressure in the pipeline section being repaired. We then estimate quantity of cost value of the gas recovered. We, thereafter, suggest a mobile compressor for saving this gas. The results obtained showed that using pump-down technique with portable compressor solution instead of venting mainly saves 54.873 million m 3 of gas with gain net cost saving about 11.628 million USD. Avoiding the release of gas to the atmosphere during venting operations will be crucial to mitigating greenhouse gas emissions. For the developing countries, including Algeria, mitigating these emissions can provide green investments for the joint implementation Kyoto Protocol flexibility mechanism. This will contribute to sustainable development and additional economic benefits through carbon credit revenues and technology transfer from industrialized countries.

Suggested Citation

  • Mounia Louhibi–Bouiri & Messaoud Hachemi, 2018. "Methane emissions from the Algerian natural gas pipelines transportation: Exploring process to reduce environmental consequences," Energy & Environment, , vol. 29(7), pages 1247-1262, November.
  • Handle: RePEc:sae:engenv:v:29:y:2018:i:7:p:1247-1262
    DOI: 10.1177/0958305X18772423
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18772423
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18772423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bélaïd, Fateh & Youssef, Meriem, 2017. "Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria," Energy Policy, Elsevier, vol. 102(C), pages 277-287.
    2. Zhang, Xiao-Bing & Xu, Jing, 2018. "Optimal policies for climate change: A joint consideration of CO2 and methane," Applied Energy, Elsevier, vol. 211(C), pages 1021-1029.
    3. Boualem Aliouat & Amine Akbi & Noureddine Yassaa & Boudjema Rachid, 2016. "A new method for cost of renewable energy production in Algeria: Integrate all benefits drawn from fossil fuel savings," Post-Print halshs-01267050, HAL.
    4. Akbi, Amine & Yassaa, Noureddine & Boudjema, Rachid & Aliouat, Boualem, 2016. "A new method for cost of renewable energy production in Algeria: Integrate all benefits drawn from fossil fuel savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1150-1157.
    5. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    6. Stambouli, A. Boudghene & Khiat, Z. & Flazi, S. & Kitamura, Y., 2012. "A review on the renewable energy development in Algeria: Current perspective, energy scenario and sustainability issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4445-4460.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    2. Younes Zahraoui & Mohammed Reyasudin Basir Khan & Ibrahim AlHamrouni & Saad Mekhilef & Mahrous Ahmed, 2021. "Current Status, Scenario, and Prospective of Renewable Energy in Algeria: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    3. Chinazaekpere Nwani & Ekpeno L. Effiong & Sunday Ituma Okpoto & Ikechukwu Kingsley Okere, 2021. "Breaking the carbon curse: The role of financial development in facilitating low‐carbon and sustainable development in Algeria," African Development Review, African Development Bank, vol. 33(2), pages 300-315, June.
    4. Yuuki Sugano & Keisuke Sato & Naoki Fukata & Kenji Hirakuri, 2017. "Improved Separation and Collection of Charge Carriers in Micro-Pyramidal-Structured Silicon/PEDOT:PSS Hybrid Solar Cells," Energies, MDPI, vol. 10(4), pages 1-13, March.
    5. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    6. Hayat Khan & Liu Weili & Itbar Khan, 2022. "Environmental innovation, trade openness and quality institutions: an integrated investigation about environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3832-3862, March.
    7. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    8. Xu, Guangyue & Yang, Hualiu & Schwarz, Peter, 2022. "A strengthened relationship between electricity and economic growth in China: An empirical study with a structural equation model," Energy, Elsevier, vol. 241(C).
    9. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    10. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    11. Filip Božić & Daria Karasalihović Sedlar & Ivan Smajla & Ivana Ivančić, 2021. "Analysis of Changes in Natural Gas Physical Flows for Europe via Ukraine in 2020," Energies, MDPI, vol. 14(16), pages 1-22, August.
    12. Mohammed Bouznit & María del P. Pablo-Romero & Antonio Sánchez-Braza, 2020. "Measures to Promote Renewable Energy for Electricity Generation in Algeria," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    13. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    14. Matheus Koengkan & José Alberto Fuinhas, 2022. "The Interactions Between Renewable Energy Consumption, Economic Growth, and Globalisation: Fresh Evidence from the Mercosur Countries," Springer Books, in: Globalisation and Energy Transition in Latin America and the Caribbean, chapter 0, pages 63-99, Springer.
    15. Anver C. Sadath & Rajesh H. Acharya, 2019. "Economic growth and environmental degradation: How to balance the interests of developed and developing countries," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 25-47.
    16. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    17. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    18. Syeda Azra Batool & Humara Ahmad & Syed Muhammad Ahmad Hassan Gillani & Hamad Raza & Muhammad Siddique & Nohman Khan & Muhammad Imran Qureshi, 2021. "Investigating the Causal Linkage among Economic Growth, Energy Consumption, Urbanization and Environmental Quality in ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 319-327.
    19. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    20. Ali-Toudert, Fazia & Weidhaus, Juliane, 2017. "Numerical assessment and optimization of a low-energy residential building for Mediterranean and Saharan climates using a pilot project in Algeria," Renewable Energy, Elsevier, vol. 101(C), pages 327-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:29:y:2018:i:7:p:1247-1262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.