IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v21y2010i2p49-73.html
   My bibliography  Save this article

A Critical Discussion of the Stern and IPCC Analyses of Carbon Emission Mitigation Possibilities and Costs

Author

Listed:
  • Ted Trainer

    (Social Work, University of New South Wales, Kensington, Australia 2052)

Abstract

Like the Stern Review the IPCC Working Group 3 Reports have been taken as showing that the greenhouse gas emissions problem can be solved at negligible cost, primarily by development of alternative energy technologies. The lengthy Fourth Assessment Report summarises the findings of many studies, rather than present analyses that can be clearly assessed. The argument in this paper is that most and probably all of the studies drawing conclusions about the mitigation potential of alternatives are invalid because they do not consider the possible limitations to renewable energy sources, nuclear energy and geo-sequestration. They are economic modelling studies which take the cost of a unit of carbon mitigation and multiply this by the amount of mitigation required, without regard to the difficulties and limits affecting the extent to which these sources can be scaled up. If the greenhouse problem is to be solved by resort to these technologies then the magnitude of the scale-ability problem is huge. This paper argues that there are major reasons why the alternatives cannot be scaled up sufficiently, and that it is not possible to explain how the anticipated 2050 energy budget could be met without exceeding safe greenhouse limits. If this analysis is sound Stern and the IPCC have been seriously misleading and the greenhouse problem cannot be solved at any cost in a society that is committed to affluent living standards and economic growth. The discussion accepts the climate science in both sources, and does not dispute the desirability of moving to renewable energy.

Suggested Citation

  • Ted Trainer, 2010. "A Critical Discussion of the Stern and IPCC Analyses of Carbon Emission Mitigation Possibilities and Costs," Energy & Environment, , vol. 21(2), pages 49-73, March.
  • Handle: RePEc:sae:engenv:v:21:y:2010:i:2:p:49-73
    DOI: 10.1260/0958-305X.21.2.49
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958-305X.21.2.49
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958-305X.21.2.49?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    2. Ted Trainer, 2003. "Can solar sources meet Australia's electricity and liquid fuel demand?," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 19(1), pages 78-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guohua Feng & Chuan Wang & Apostolos Serletis, 2018. "Shadow prices of $$\hbox {CO}_{2}$$ CO 2 emissions at US electric utilities: a random-coefficient, random-directional-vector directional output distance function approach," Empirical Economics, Springer, vol. 54(1), pages 231-258, February.
    2. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    3. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    4. Alan Sanstad & Hans Johnson & Noah Goldstein & Guido Franco, 2011. "Projecting long-run socioeconomic and demographic trends in California under the SRES A2 and B1 scenarios," Climatic Change, Springer, vol. 109(1), pages 21-42, December.
    5. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.
    6. Bachmann, Till M. & van der Kamp, Jonathan, 2014. "Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant," Energy, Elsevier, vol. 68(C), pages 125-139.
    7. Shreekar Pradhan & J. Scott Holladay & Mohammed Mohsin & Shreekar Pradhan, 2015. "Environmental Policy Instruments and Uncertainties Under Free Trade and Capital Mobility," EcoMod2015 8102, EcoMod.
    8. Natacha Raffin & Katheline Schubert, 2007. "International Emissions Trading Scheme and European Emissions Trading Scheme: What Linkages?," Post-Print halshs-00288394, HAL.
    9. Fischer, Carolyn & Fox, Alan, 2004. "Output-Based Allocations of Emissions Permits: Efficiency and Distributional Effects in a General Equilibrium Setting with Taxes and Trade," RFF Working Paper Series dp-04-37, Resources for the Future.
    10. Wu, Jung-Hua & Chen, Yen-Yin & Huang, Yun-Hsun, 2007. "Trade pattern change impact on industrial CO2 emissions in Taiwan," Energy Policy, Elsevier, vol. 35(11), pages 5436-5446, November.
    11. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    12. Parry, Ian W.H., 2007. "Are the costs of reducing greenhouse gases from passenger vehicles negative?," Journal of Urban Economics, Elsevier, vol. 62(2), pages 273-293, September.
    13. Carolyn Fischer & Alan K. Fox, 2007. "Output-Based Allocation of Emissions Permits for Mitigating Tax and Trade Interactions," Land Economics, University of Wisconsin Press, vol. 83(4), pages 575-599.
    14. Rick Baker & Andrew Barker & Alan Johnston & Michael Kohlhaas, 2008. "The Stern Review: an assessment of its methodology," Staff Working Papers 0801, Productivity Commission, Government of Australia.
    15. Max Meulemann, 2017. "An Empirical Assessment Of Components Of Climate Architectures," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-36, November.
    16. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    17. Chunbo Ma and Atakelty Hailu, 2016. "The Marginal Abatement Cost of Carbon Emissions in China," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    18. Van den Bergh, Kenneth & Delarue, Erik, 2015. "Quantifying CO2 abatement costs in the power sector," Energy Policy, Elsevier, vol. 80(C), pages 88-97.
    19. Michel, David, 2009. "Foxes, hedgehogs, and greenhouse governance: Knowledge, uncertainty, and international policy-making in a warming World," Applied Energy, Elsevier, vol. 86(2), pages 258-264, February.
    20. Johannes Ziesmer & Ding Jin & Sneha D Thube & Christian Henning, 2023. "A Dynamic Baseline Calibration Procedure for CGE models," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1331-1368, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:21:y:2010:i:2:p:49-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.