IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v20y2009i6p875-899.html
   My bibliography  Save this article

A Time-Series Energy Input-Output Analysis for Building an Infrastructure for the Energy and Environment Policy in South Korea

Author

Listed:
  • Whan-Sam Chung
  • Susumu Tohno

Abstract

From an average annual growth rate point of view, it might be concluded that the government's efforts in reducing Korea's GHG emission have been making progress; the growth rate of South Korea's GHG emission (4.8%) was less than that of its primary energy consumption (6.2%) during 1990–2000. To cope with a more strict protocol worldwide, South Korea should avoid the usual political rhetoric or declaration of principles and it should launch an effective action. Such a transition from a policy perspective would begin by the analysis of the interrelations among economic activities, energy use, and GHG emissions. The application of an input-output approach, which incorporates a material flow analysis, could be a very useful tool for such an analysis. In this study, four sequential 96 × 96 hybrid units energy IO tables from 1985 to 2000 were generated. Using these four sequential matrices, the energy intensities and the GHG emission intensities, caused by energy use, were estimated for each sector. It was revealed that even though the energy consumption and GHG emissions have increased, the intensities have gradually improved in Korea. The estimated values were compared to national statistics and the differences were found to be acceptable. It was found that the energy input-output analysis can supply useful data for energy and environment policy makers. Some recommendations were made to improve this model.

Suggested Citation

  • Whan-Sam Chung & Susumu Tohno, 2009. "A Time-Series Energy Input-Output Analysis for Building an Infrastructure for the Energy and Environment Policy in South Korea," Energy & Environment, , vol. 20(6), pages 875-899, October.
  • Handle: RePEc:sae:engenv:v:20:y:2009:i:6:p:875-899
    DOI: 10.1260/095830509789625338
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/095830509789625338
    Download Restriction: no

    File URL: https://libkey.io/10.1260/095830509789625338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Park, Hi-Chun & Heo, Eunnyeong, 2007. "The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000--An input-output analysis," Energy Policy, Elsevier, vol. 35(5), pages 2839-2851, May.
    2. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    3. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    4. Gay, Philip W. & Proops, John L.R., 1993. "Carbon---dioxide production by the UK economy: An input-output assessment," Applied Energy, Elsevier, vol. 44(2), pages 113-130.
    5. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    6. Rhee, Hae-Chun & Chung, Hyun-Sik, 2006. "Change in CO2 emission and its transmissions between Korea and Japan using international input-output analysis," Ecological Economics, Elsevier, vol. 58(4), pages 788-800, July.
    7. Peet, N.J. & Carter, A.J. & Baines, J.T., 1985. "Energy in the New Zealand household, 1974–1980," Energy, Elsevier, vol. 10(11), pages 1197-1208.
    8. Hondo, Hiroki & Sakai, Shinsuke & Tanno, Shiro, 2002. "Sensitivity analysis of total CO2 emission intensities estimated using an input-output table," Applied Energy, Elsevier, vol. 72(3-4), pages 689-704, July.
    9. Wright, David J., 1974. "3. Good and services: an input-output analysis," Energy Policy, Elsevier, vol. 2(4), pages 307-315, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Whan-Sam & Tohno, Susumu & Choi, Ki-Hong, 2011. "Socio-technological impact analysis using an energy IO approach to GHG emissions issues in South Korea," Applied Energy, Elsevier, vol. 88(11), pages 3747-3758.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Whan-Sam & Tohno, Susumu & Shim, Sang Yul, 2009. "An estimation of energy and GHG emission intensity caused by energy consumption in Korea: An energy IO approach," Applied Energy, Elsevier, vol. 86(10), pages 1902-1914, October.
    2. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    3. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    4. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    5. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    6. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    7. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    8. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    9. Wu, X.F. & Chen, G.Q., 2017. "Global primary energy use associated with production, consumption and international trade," Energy Policy, Elsevier, vol. 111(C), pages 85-94.
    10. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    11. Park, Hi-Chun & Heo, Eunnyeong, 2007. "The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000--An input-output analysis," Energy Policy, Elsevier, vol. 35(5), pages 2839-2851, May.
    12. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    13. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    14. Li, Xi & Zhang, Runsen & Chen, Jundong & Jiang, Yida & Zhang, Qiong & Long, Yin, 2021. "Urban-scale carbon footprint evaluation based on citizen travel demand in Japan," Applied Energy, Elsevier, vol. 286(C).
    15. Fu, Feng & Liu, Hongtao & Polenske, Karen R. & Li, Zheng, 2013. "Measuring the energy consumption of China’s domestic investment from 1992 to 2007," Applied Energy, Elsevier, vol. 102(C), pages 1267-1274.
    16. Zhang, L.X. & Wang, C.B. & Bahaj, A.S., 2014. "Carbon emissions by rural energy in China," Renewable Energy, Elsevier, vol. 66(C), pages 641-649.
    17. Jihoon Min & Narasimha D. Rao, 2018. "Estimating Uncertainty in Household Energy Footprints," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1307-1317, December.
    18. Nasseri, Iman & Assané, Djeto & Konan, Denise Eby, 2015. "While visitors conserve, residents splurge: Patterns and changes in energy consumption, 1997-2007," Energy Economics, Elsevier, vol. 49(C), pages 282-292.
    19. Mukaramah Harun, 2020. "Pursuing More Sustainable Energy Consumption by Analyzing Sectoral Direct and Indirect Energy Use in Malaysia: An Input-Output Analysis," Papers 2001.02508, arXiv.org.
    20. Chen, G.Q. & Wu, X.F., 2017. "Energy overview for globalized world economy: Source, supply chain and sink," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 735-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:20:y:2009:i:6:p:875-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.