IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v40y2019i2_supplp131-156.html
   My bibliography  Save this article

Do Jumps and Co-jumps Improve Volatility Forecasting of Oil and Currency Markets?

Author

Listed:
  • Fredj Jawadi
  • Waël Louhichi
  • Hachmi Ben Ameur
  • Zied Ftiti

Abstract

This paper aims at modeling and forecasting volatility in both oil and USD exchange rate markets using high frequency data. We test whether extreme co-move-ments (co-jumps) between these markets, as well as intraday unexpected news, help to improve volatility forecasting or not. Accordingly, we propose different extensions of Corsi (2009)’s model by including co-jumps and news. Our analysis provides two interesting findings. First, we find that both markets exhibit significant co-jumps driven by unexpected macroeconomic news. Second, we show that our model outperforms Corsi (2009)’s model and provides more accurate forecasts. In particular, while co-jumps constitute a key variable in forecasting oil price volatility, the unexpected news is relevant to forecasts of USD exchange rate volatility.

Suggested Citation

  • Fredj Jawadi & Waël Louhichi & Hachmi Ben Ameur & Zied Ftiti, 2019. "Do Jumps and Co-jumps Improve Volatility Forecasting of Oil and Currency Markets?," The Energy Journal, , vol. 40(2_suppl), pages 131-156, December.
  • Handle: RePEc:sae:enejou:v:40:y:2019:i:2_suppl:p:131-156
    DOI: 10.5547/01956574.40.SI2.fjaw
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.40.SI2.fjaw
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.40.SI2.fjaw?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
    2. Domenico Ferraro & Kenneth S. Rogoff & Barbara Rossi, 2011. "Can oil prices forecast exchange rates?," Working Papers 11-34, Federal Reserve Bank of Philadelphia.
    3. Barnett, William A., 2012. "Getting it Wrong: How Faulty Monetary Statistics Undermine the Fed, the Financial System, and the Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262516888, December.
    4. William A. Barnett, 2000. "Economic Monetary Aggregates: An Application of Index Number and Aggregation Theory," Contributions to Economic Analysis, in: The Theory of Monetary Aggregation, pages 11-48, Emerald Group Publishing Limited.
    5. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    6. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    7. Reboredo, Juan Carlos & Rivera-Castro, Miguel A. & Zebende, Gilney F., 2014. "Oil and US dollar exchange rate dependence: A detrended cross-correlation approach," Energy Economics, Elsevier, vol. 42(C), pages 132-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Xin & Sensoy, Ahmet & Nguyen, Duc Khuong & Yao, Shouyu & Wu, Yiyao, 2022. "Positive information shocks, investor behavior and stock price crash risk," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 493-518.
    2. Louhichi, Waël & Ftiti, Zied & Ameur, Hachmi Ben, 2021. "Measuring the global economic impact of the coronavirus outbreak: Evidence from the main cluster countries," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    3. Vincenzo Candila & Denis Maximov & Alexey Mikhaylov & Nikita Moiseev & Tomonobu Senjyu & Nicole Tryndina, 2021. "On the Relationship between Oil and Exchange Rates of Oil-Exporting and Oil-Importing Countries: From the Great Recession Period to the COVID-19 Era," Energies, MDPI, vol. 14(23), pages 1-18, December.
    4. Oguzhan Cepni, Duc Khuong Nguyen, and Ahmet Sensoy, 2022. "News Media and Attention Spillover across Energy Markets: A Powerful Predictor of Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    5. Zhang, Yue-Jun & Zhang, Han, 2023. "Volatility forecasting of crude oil futures market: Which structural change-based HAR models have better performance?," International Review of Financial Analysis, Elsevier, vol. 85(C).
    6. Ftiti, Zied & Ben Ameur, Hachmi & Louhichi, Waël, 2021. "Does non-fundamental news related to COVID-19 matter for stock returns? Evidence from Shanghai stock market," Economic Modelling, Elsevier, vol. 99(C).
    7. Fredj Jawadi & Mohamed Sellami, 2022. "On the effect of oil price in the context of Covid‐19," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 3924-3933, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    2. Álvaro Cartea & Dimitrios Karyampas, 2016. "The Relationship between the Volatility of Returns and the Number of Jumps in Financial Markets," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 929-950, June.
    3. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    4. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    5. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    6. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Yang, Lu & Cai, Xiao Jing & Hamori, Shigeyuki, 2018. "What determines the long-term correlation between oil prices and exchange rates?," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 140-152.
    8. Doureige J. Jurdi, 2020. "Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    9. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    10. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    11. Barnett, William A. & Su, Liting, 2017. "Data sources for the credit-card augmented Divisia monetary aggregates," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 899-910.
    12. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    13. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    14. Belongia, Michael T. & Ireland, Peter N., 2015. "A “Working” Solution To The Question Of Nominal Gdp Targeting," Macroeconomic Dynamics, Cambridge University Press, vol. 19(3), pages 508-534, April.
    15. Barnett, William A. & Su, Liting, 2020. "Financial Firm Production Of Inside Monetary And Credit Card Services: An Aggregation Theoretic Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 24(1), pages 130-160, January.
    16. James J. Heckman & Apostolos Serletis, "undated". "Introduction to Internally Consistent Modeling, Aggregation, Inference, and Policy," Working Papers 2014-73, Department of Economics, University of Calgary, revised 29 Sep 2014.
    17. William A. Barnett & Hyun Park & Sohee Park, 2021. "The Barnett Critique," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202115, University of Kansas, Department of Economics, revised Jun 2021.
    18. Kyriaki G. Louka & Nektarios A. Michail, 2024. "Oil prices and the euro exchange rate," International Economics and Economic Policy, Springer, vol. 21(4), pages 969-983, October.
    19. Yin Liao & Heather Anderson & Farshid Vahid, 2010. "Do Jumps Matter? Forecasting Multivariate Realized Volatility Allowing for Common Jumps," ANU Working Papers in Economics and Econometrics 2010-520, Australian National University, College of Business and Economics, School of Economics.
    20. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.

    More about this item

    Keywords

    Volatility; Oil price; U.S. dollar exchange rate; Co-jumps; Forecasts;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:40:y:2019:i:2_suppl:p:131-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.